
MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
---------- TANDY COMPUTER PROD1'CT9 ----------

. MODEL 4 TR SOOS 6. 02. 0~

UJILITIES PACKAGE

1

M>9EL 4 TRSDOS 6.02.Ji · UTILITIES PACKAGE
--------·r._ ,:= · --------•· V COMPUTER PRODUCTS ---------

.: ... - .. ,i,!T;.)U<.

~---;,~~ -:.. .. tc, ~ 't ,.·c~~, :.
a3 ,~ _ F t'f• - , ..

.,
'.J

;}'

Model 4 TRSOOS 6.02.~ Uti 1 ~ti.~l;Ji;a2~~:/~j,;yri,9b:~ ;1984 · ;. · •
Logical Systems, J:nc ••. :. · ·LicerrsiGfft~✓'iandy.:·cor.p~~tion:•~ · •: 7;-:

All Rights Reserved.
. " .. ~ ,I -

... .. ~-/ -"'~lt- ::, •.· -f ..

... -- ~ BASIC.: Copyright 198)-_Mj~rosoft; ...
L i~~nsed to Tandy Corporation; ;1:;~H~RightiJ~e'ser~ed;

•·_,.e~-,1.~-;.;-l: •·,,..;,,; ... ,, ,..-:-,.' •. ~ , :·• ('.
~epro~qc~.i_o~:q~~}~~~Jno~~ ~xpressrwr1tJef 1pe,tmiJ~i9l·~,_om randy ~.
Corporaf10n 6~:·aflf _l}_cir.tTort of tti.i..s, man4:a:I: 1s ·in-on~tted.~, Wh1l:e .
reasona6le-. ef{orts' ha\"e ·· been· tal<en1 in ~e~~repar~tf~~f18!:h-)? ·manual-:.
to assure. 1ts attijracy, Tand'y Corporat10~ assumes no l1ab111ty
resu'lting"from any errors of omissions in this manual-Q~ 'f1"8m the use"'·~
of the information contained herein.

2

----------- TANDY CCJMPUTER PROl::KJCTS ·-----=···•=-~=·•-"""·'""· .. ---

TRSDOS 6.2 Utilities
Cat. No. 26-~315

Addendum

The COMP6 utility recognizes only the abbreviated form of
the PRINT parameter, P.

Using COMP6 to Compare 2 Diskettes in a 2-Drive System

At the TRSOOS Ready prompt, type:

SYSTEM' (SYSRES=l) <ENTER>

When the TRSDOS Ready prompt again appears on your screen,
type the following commands::

SYSTEM . (SYSRES=·4 r :<ENTER>
RUN {X) CQMP6. :~ :l · <ENTER>

Now the screen shows:

Insert SOURCE disk -<ENTER>

If the system disk' contains the COMP6 µti 1.it.¥,r.,, pres.t:/'' .. \.·
<ENTER>. If the. CdMP6 utility is on, a .diff~r~nt, d.iskette/
insert that di:skette 'and press <~E!R> : . · · · ·

• '. .-' ,,~ • ' • < ;_._ .: .:j ~.

Now the screen .shows:

Insert SYSTEM diskette <ENTER>

Insert one of the diskettes to compa.i;-~ i.n. .Ori v~, j. , .. Iµsert
the other diskette In' ·Drive 1. ·Now.pres$. <ENTER> •.

~;-~ '' . '

' . ' ~

When the comparison is complete, the screen shows:

1

--------------·,. ,TANl:)Y COMPUTER PRODUCTS -----------

Disk compare completed

Remove the d.i.skette ,"from Drive fJ and insert the .'system
diskette.

Using COMP6 to Compare Piles on Data Diskettes

At the TRSDOS Ready prompt, type the following commands::

SYSTEM (SYSRES=l) <ENTER>
SYSTEM (SYSRES=2) <ENTER>
SYSTEM (SYSRES=3) <ENTER>
SYSTEM (SYSRES=4) <ENTER>
RUN (X) COMP6 <ENTER>

The screen shows:

Insert SOURCE disk <ENTER>

If the system disk contains the COMP6 utility, press
<ENTER>. If COMP6 is on another diskette, insert that
diskette and press <ENTER>.

The screen shows:

Insert SYSTEM diskette <ENTER>

Insert one diskette in Drive~- Insert the other diskette in
Drive 1. Press <ENTER>.

The screen shows:

Filespec l?
Filespec 2?

Type the names of the files you are comparing and.the drive
number that contains the diskette on which the file
resides. When the comparison is complete, the screen shows:

2

------------ TANDY COMPUTER PRDDUC'Ta,------------

Disk compare completed

Remove the diskette.',from Drive , and inser.t ':t.he~~system
diskette.

Part No. 875-9724

1.

J .
. ,; ,:::

3

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
TANDY COMPUTER PRODUCTS

C O N T E N T S

INTRODUCTION 5

QFB6 .•••...•.•...•.•••.•••..•.••..•..••....•.•••.• • -. • . • • • • • • . • • 7

COMP6 ...
BSORT

MOD324 .•.

UNKILL. ..

.
Sorting a Single-Dimension Array •..•..•••••••••
Using Secondary Sort Arrays ..••••.••.•••••••••.•.••••
Using Multiple Secondary Arrays ••••••••.•••
Using Tag Arrays ••.•••••••..•••
MID$ Sorting .•.•••.•.•.•.•.••..••••.••..•••••••••••••
Generating an Index Array .•.•..••.••.
Sorting 2-Dimensional Arrays ••.•..••.
Using 2-Dinemsional Secondary and Tag Arrays .•.••••••
Using a Variable to Pass the Sort Command ...••...••••

Program Usage ..••.

.
Error Messages •..•••••.•••. ~ •.••.•••••••..•

THE BASIC ANSWER USER GUIDE
Introduction •..•••..•••..•••••••.•.•••.•••.
Creating Source Code•.•...••...•....•.••...••
Upper and Lower Case Usage in Source Code .•..••.•••••
Creating Labels •.•.••....•..•..••.••.•.•.•••.
Varial:>les ••••••••••••••••••••••••••.••••••.••.
Global
Local

Definitions
Def in it i ans

and
and

Implementation ••.
Implementation •.•

Array Var i ab 1 es ••.••...••...•.•.••..•
The REM Statement•...•••..•.•••.••••.••••
The BASIC RETURN Statement •••.•••••••••••....•
TBA Directives .•
Starting TBA ••.•

TUTORIAL GUIDE
Introduction ••
Labels ..••.••.
Procedures •.•.

3

. . .

11

13
15
16
18
2~
22
24
26
28
3~

31
34

43
43

45
45
45
45
46
47
48
48
48
49
49
49
51

52
52
52
56

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
---------- TANDY CDMPUTER PRODUCTS----------

Variables... 57
Variable Names....................................... 58
Defining Variables.................................. 59
Global versus Local Variables....................... 60
Miscellaneous Differences and Information........... 68

WRITING SOURCE CODE... 69
Using A Word Processor/Text Editor to Write

Source Code .••••.........•.•..•.••.•.•.••.••..•
Using the BASIC Interpreter to Write Source Code
Using Directives in Writing Source Code ..••••.••.•••
*PRLINES ••••••••••.••...•.•••.••.•.•...•••.•.•..•.••
LIST ON /OFF ••..•••.••••.••.•..•••••.•.....••...•••••
*PAGE •
*TITLE ... ~···••11••··
* I F /*END .•••..•••••.•••...•...•.••••••• " " ••.•...•.••
* . express 1 on .• ..••.••.•..•.••..•.••..•..•..••.••..•••

69
70
71
72
73
76
78
79
81

USING TBA •.•....••••••••••••.••••••.•.•.•••• ,, .. *.............. 84
Processing Source Code.............................. 84
Error Messages...................................... 88
Sample Screen and Video Output...................... 90

HOW THE TBA OPERATES.... • • • • • . • . • . • • • • . . • • • • • • • • • . . . • • • • • . . • . • 99

GENERAL OPERATIONAL GUIDELINES and PROGRAM MAINTENANCE....... 101
Use of Error-Trapping Routines •.••.•.•.•...••••.•..• 101
Enhancing Program Operation and Speed ..•..••...•••.• 102
Use of CHAIN, MERGE, COMMON •.••..•...•..••...•.•..•. 104
Maintaining Programs .•...•.•.••.•.....••....•....... 110

EXAMPLE PROGRAMS. • . • • • • • • • • • • • • • • • • . • • • • • • • . • • • . • • • • • • • . . • . . • • 111

4

MODEL 4 TRSDOS 6.02.0~ UTILITIES PACKAGE
----------- TANDY COMPUTER PRODUCTS -----------

I N T R O D U C T I O N

The TRSDOS 6.2 UTILITIES package is a powerful group of programs that
you use to write other programs. You use some of these utilities with
BASIC programs only.

This package contains the following 6 utilit.Y programs:

. QFB6, a program that quickly formats and back? up floppy diskettes.
COMP6, a program that lets you compare 2 floppy diskettes or 2
files. You can also use it to compare parts of diskettes or parts of
files.

BSORT, a utility you call from a BASIC program that lets you sort
primary, secondary, tag, and index arrays. Arrays can be
multidimensional, and you can arrange them in ascending or descending
order.

MOD324, a system for transferring Model III BASIC programs to a
Model 4 BASIC form, with a minimum of editing or reprogramming.

UNKILL, a utility for recovering a file that you removed or purged,
but did not yet allocate the space to another file.

TBA, a system that lets you write BASIC programs in a structured
self-documenting manner, and lets you maintain programs easily •

•

Note: Use these utilities on Model 4 TRSOOS, Version 6;_,02.0~. Do
not use them on earlier versions of TRSOOS.

5

MODEL 4 TRSDOS 6.02.0~ UTILITIES PACKAGE
---------- TANDY COMPUTER PRODUCTS----------

BLANK PAGE

6

MODEL 4 TRSDOS 6.02.0~ UTILITIES PACKAGE
----------- TANDY CDMPUTER PRODUCTS -----------

QFB6--QUICK FORMAT ANO BACKUP

The QFB6 (Quick Format and Backup) utility lets you create a mirror
image backup of the source disk without first formatting the
destination disk. To use QFB6, you must have 2 floppy drives and a
source diskette formatted with the TRSDOS 6.2 FORMAT utility. The
syntax is:

QFB6 [:Js [:Jd [(parameters, .••)]

:s indicates the source drive. The colon is optional.
:d indicates the destination drive. The colon is optional.

If you omit source and/or destination drive, QFB6 prompts you
for them.

Parameters:

ALL= specifies whether QFB6 reads and copies all cylinders
of the source disk to the destination disk, or only
allocated cylinders. You can specify the ON/OFF
switch; the default is OFF.

Vl= specifies whether QFB6 verifies the destination disk
on the first pass (after it writes each cylinder).
You can specify the ON/OFF switch; the default is on .
•

V2= specifies whether QFB6 verifies the destination disk
on the second pass (after it writes the complete disk).
You can specify the ON/OFF switch; the default is OFF.

/

QUERY= prompts for unspecified parameters. You can specify
the ON/OFF switch. The default is OFF.

Abbr: ON=Y, OFF=N, QUERY=Q, ALL=A

7

MODEL 4 TRSOOS 6.02.0~ UTILITIES PACKAGE
----------- TANDY COMPUTER PRODUCTS -----------

QFB6 formats and backs up in a single pass. If you omit drives, QFB6
asks you for them. In the command line, :sis the source drive;
:dis the destination drive. If you omit-parameters, QFB6 uses the
defaults.

To format and backup, at the TRSDOS prompt, type:

QFB6 1 2 [ENTER]

Drive 1 is the source drive, and Drive 2 is the destination drive.
The screen shows: Load diskettes and press [ENTER]. After you insert
the diskettes and press [ENTER], the backup begins. The following
takes place:

1. QFB6 logs in the source diskette to determine the type
of format.

2. QFB6 formats Cylinder 0 of the destination diskette.
3. If Cylinder 0 of the source disk contains data, QFB6 reads

it into memory and writes it to the destination diskette.
4. QFB6 verifies Cylinder 0 of the destination diskette (the Vl

parameter default).
5. QFB6 repeats Steps 2-4 for all remaining cylinders.
6. The screen shows the following message after QFB6 verifies

the last cylinder:

Duplication complete 1 disk created

Replace destination disk and press <ENTER> to repeat
•. <R> to restart with new parameters

•.• or ..•• <BREAK> to exit program.

,.,,-'

8

MODEL 4 TRSOOS 6.02.0~ UTILITIES PACKAGE
----------- TANDY COMPUTER PRODUCTS -----------

7. To terminate the program, press [BREAK]. To make another
backup, press [ENTER]. If you press <BREAK>, the screen
shows:

load SYSTEM diskette and press <ENTER>

Place a system diskette in Drive 0, and press [ENTER] to return
to TRSOOS. The prompt appears even if you run QFB6
from a hard drive, in which case, press [ENTER].

To use QFB6 again with different parameters, type R [ENTER].
QFB6 prompts you for the drives and the parameters.

The screen shows these same prompts (displayed below) if you type the
command QFB6 (Q=Y) [ENTER].

Source drive?
Destination drive?
Duplicate unallocated tracts? (Y/N)
Verify on same pass? (Y/N)
Verify on second pass? (Y/N)

Respond to these questions by typing either Y (Yes) or N (No) and
[ENTER].

The first prompt relates to the All parameter. If you answer Yes,
QFB6 reads all cylinders from the source diskette and writes them to
the destination diskette, regardless of whether or not the cylinder
contains information. If you answer No, QFB6 reads and writes only
cylinders containing information.

The next prompt relates to the Vl parameter. If you answer Yes, QFB6
verifies each cylinder on the destination diskette immediately after
each write. If you answer No, QFB6 does not immediately verify.

The final prompt relates to the V2 parameter. If you answer Yes, QFB6
verifies all cylinders on the destination diskette after it completes
all writes to the diskette. If you answer NO, there is no second pass
veri fi cation.

If an error occurs, the screen shows an appropriate error message and
prompts you for an action.

9

MODEL 4 TRSDOS 6.02.0~ UTILITIES PACKAGE
----------- TANDY COMPUTER PRODUCTS -----------

During any QFB6 operation, you can press [BREAK] it to terminate the
process.

Note: QFB6 assumes that you want a mirror image backup, and does
not check for data on the destination diskette. It destroys any
existing information on a destination diskette. Also, QFB6 does not
clear the Mod Flags of files on the source disk.

1~

MODEL 4 TRSDOS 6.02.0~ UTILITIES PACKAGE
---------- TANDY CDMPUT&R PRODUCTS----------

COMP6--COMPARE PROGRAM

Using a character for character match, this utility compares 2 files
or 2 diskettes to determine if the information is identical. Use COMP6
after a back.up or a copy to determine the validity of the data.
Thesyntax is:

COMP6 filespecl [TO] filespec2 [(parameter, •••)]
COMP6 :drivel [TO] :drive2 [(parameter, •••)]

Parameters:

REC= specifies record number at which to start
comparing 2 filespecs (default is 0).

NUM= indicates the number of records of a filespec,
or the sectors of a disk, to compare.

ALL displays each nonmatching byte.

PRINT sends disp·lay to *PR and *DO.

CYL= specifies cylinder at which to start comparing
2 drives (default is 0).

SEC= specifies sector at which to start comparing
2 diskettes or 2 disks (default is 0).

Abbr: REC=R, NUM=N, ALL=A, PRINT=P, CYL=C, SEC=S

This command: •
COMP6 MAY/OAT:3 :4 [ENTER]

generates this output:

MAY/DAT:3
MAY/DAT:4

contains 17 sectors, EOF offset= 70
contains 17 sectors, EOF offset= 70

11

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
----------- TANDY CDMPUTER PRODUCTS -----------

With COMP6, a drivespec alone can serve as the second filespec. COMP6
allows this 1 exception to typing a complete filespec. Since the
files are identical, the screen displays the number of sectors
compared followed by the end-of-file offset.

If the files are different, the following occurs:

COMP6 FISCAL82/DAT:3 FISCAL82/DAT:4 (R=4) [ENTER]

Posn= X'0005,00 FISCAL82/DAT: 3 = X 1 20, FISCAL82/DAT:4 = X1 00
29 bytes did not match.

Posn= X10005,B0 FISCAL82/DAT:3 = X154, FISCAL82/DAT:4 = X'00
32 bytes did not match.

FISCAL82/DAT: 3 contains 18 sectors, EOF offset = 100
FISCAL82/DAT:4 contains 18 sectors, EOF offset = 100

Line 1 shows the record number of a discrepant sector, the number of
the first discrepant byte (following Posn=), and the contents of that
byte in each filespec. Line 2 displays the total number of continuous
bytes that do not match. If you specify the ALL parameter, the screen
displays each unmatching byte. By specifying the parameter R=4, the
comparison begins at Record 4.

To compare 1 disk with another, use drive numbers instead of
filespecs. Specify the starting cylinder and sector number either in
hexadecimal (X'00') format or as a decimal integer. Use the NUM=
parameter to specify the number of continuous sectors to compare.

Unlike file-to-file comparisons, disk-to-disk comparisons display the
currently accessed cylinder, sector, and byte. The source drive (the
first drivespec) reads as much information as possible into memory.
COMP6 then compares this information to the destinatio~ drive. If
COMP6 detects discrepant bytes, the screen displays:

Cyl X'00, Sec X'00, Byte X'00, Drive 2 = X1 6D, Drive 3 = X'31
3078 bytes did not match.

If you specify the ALL parameter, the screen displays the contents of
each different byte. To send the output to the printer and the
screen, specify the PRINT parameter.

12

KlDEL 4 TRSDOS 6. 02. 00 UTILITIES PACKAGE
----------- TANDY COMPUTER PADDUCTB -----------

BSORT--BASIC SORT UTILITY

BSORT is a high speed utility that sorts BASIC arrays. It sorts any
type of array (integer, single- or double-precision, or string),
including 1- and 2-dimensional arrays. To utilize BSORT, use the
following syntax as a line number in your BASIC program.

Note: Integer refers to integer variables or constants.

SYSTEM"RUN BSORT [NUM],*IND%,[+][-]PSA[!],[parameter, •••]"

SYSTEM"RUN BSORT $STRVAR$"

NUM

*IND%(x)

PSA

X

number of elements to sort, must be an integer.

single dimension integer array. Use to generate an
index array containing element numbers of the sorted
array. Do not use to reorder elements in the array
you are sorting.·

primary sort array name. An optional plus (+) or minus
(-) precedes the array name to indicate ascending (+)
or descending(-) order. If you omit a directional
sign, BSORT assumes ascending order. A type
declaration tag(!,#,$,%) follows the array name.

integer; indicates the first element number you
want to sort (subscript).

13

MODEL 4 TRSDOS 6.02.0~ UTILITIES PACKAGE
----------- TANDY COMPUTER PRODUCTS -----------

Optional parameters:

SSA(x)

TA

secondary sort array. A plus (+) or minus (-) precedes
the array name. A type declaration tag follows.
Use a sort key that includes corresponding
information from the primary and secondary arrays.
Any reordering of the primary array causes a
corresponding reordering of the secondary array.
You can use more than 1 array, but if the
secondary array is 2-dimensional, use a subscript.

tag array. Any reordering of the primary array causesa
corresponding reordering in a tag array. A plus or
minus cannot precede a tag array. Specify tag arrays
after secondary array definitions. To specify more
than 1 tag array, separate each with a comma.

<i.~) mid-string information that indicates the sort key
begins at positions in the string, for n
characters, wheres-and n are integer numbers.
Val id only with string arrays and immediately
following the array information. Do not use it with
tag arrays.

$STRVAR$ non-array string variable that contains parameters
for sorting. Use if there are more than 79
characters within the quotation marks.

BSORT performs many different sorting tasks within a BASIC program.
Use established variables and arrays (BSORT cannot allocate memory
for them). You must use a dimensioned array in a sort command. The
following examples illustrate the types of sorts BSORT performs.

14

MODEL 4 TRSOOS 6.02.0~ UTILITIES PACKAGE
---------- TANDY COMPUTER PRODUCTS-----------

Sorting a Single-Dimension Array

Although you can sort any type of array (integer, single- or
double-precision, or string), sorting the single dimension array is
easiest. To sort a single dimension array, pass 2 parameters--the
number of elements to sort, and the starting position in the primary
sort array--to BSORT. For example, assume the following string array
exists in memory:

A$(1) A$(2) A$(3) A$(4) A$(5) A$(6)
==

SMITH JONES BROWN WILLIAMS JOHNSON GREEN
--

To sort this array, enter the following command as a line number in
your BASIC program:

SYSTEM•RUN BSORT 6,+A$(1)" [ENTER]

A$(1) A$(2) A$(3) A$(4} A$(5) A$(6)
==

BROWN GREEN JOHNSON JONES SMITH WILLIAMS
--

The command specifies sorting 6 e1ements in array A$ (the primary
sort array), and starting to sort at Element 1.

This type of sort reorders elements in ascending order, so that the
value of A$(1) is less than A$(2) is less than A$(3), and so on. The
plus sign preceding the primary sort array tells BSORT to reorder the
array in ascending order.

To sort a primary array in descending order, precede the primary sort
array with a minus sign. Execute the sort command by typing:

SYSTEM"RUN BSORT 6,-A$(1}" [ENTER]

Now, the value of A$(1) is Williams, and the value of A$(6) is Brown.

15

t-'KJDEL 4 TRSDOS 6. 02. 0(1 UTILITIES PACKAGE
----------- TANDY COMPUTER PRODUCTS -----------

In the previous examples, integer constants represent both the number
of elements to sort (6) and the starting string array position (1).
If the variable in the sort command has a type declaration tag, you
can use DEF statements (for example, DEF INT).

You can sort any part of an array for any number of elements. In the
previous examples, if A$ has 7 elements [A$(0) through A$(6}], you
can sort Elements 2-5 in ascending order with these commands:

NM%=4:P0%=2
SYSTEM•RUN BSORT NM%,A$(PO%)•

If you sort beyond the dimensions of the array, BSORT returns
an error. In the previous example, if PO% is 2, NM% must be less than
6.

Using Secondary Sort Arrays

You can use more than 1 array to determine the results of a sort
operation. Specify secondary sort arrays after the primary sort
array. BSORT reorders them in.conjunction with the primary sort
array, and they help determine direction.

16

MODEL 4 TRSDOS 6.02.0~ UTILITIES PACKAGE
------------ TANDY COMPUTER PRODUCTS ------------

EXAMPLE (Array A$):
A$(1) A$(2) A$(3) A$(4) A$(5) A$(6)

============~=::=====~===========~======================
SMITH JONES JONES WILLIAMS JOHNSON JONES

==

F$(1) F$(2) F$(3) F$(4) F$(5) F$(6)
===========-~===

SAMMY BILLY BETTY RICHARD CHARLES BOBBY
==

The Array A$ represents a list of last names; the Array F$ contains
the corresponding first names. If the last names are the same, the
first name determines the ascending order. To create a list of these
names in ascending order, use the command below:

SYSTEM"RUN BSORT 6,A$(1),+f$ [ENTER]
A$(1) A$(2) A$(3) A$(4) A${5) A$(6)

==
JOHNSON JONES JONES JONES SMITH WILLIAMS

--
F$(1) F$(2) F$(3) F$(4) F$(5) F$(6)

==
CHARLES BETTY BILLY BOBBY SAMMY RICHARD

==

The Array F$ is a secondary sort array. It determines the sorted
order if a direct match occurs in the primary array. When you specify
a secondary sort array, you assume a direct correlation between
elements in the primary array. If you reorder the primary array, you
reorder the secondary array as well. In the above example, the last
names carry the first names with them to their new position in the
array. If any last names match exactly, the program sorts the first
names.

Separate a single-dimension secondary array from the primary array
with a comma. You do not need a subscript number. The element number
in the primary array determines any reordering. In other words,
Element 1 in the primary array corresponds to Element 1 in the
secondary array. You can use BSORT only to sort the number of
elements that is common to both the primary and secondary array.

17

MODEL 4 TRSOOS 6.02.0~ UTILITIES PACKAGE
----------- TANDY COMPUTER PRODUCTS -----------

For example, if a primary array has 5~ elements (0-49) and a
secondary array has 1~ elements (0-9), you can sort both arrays up to
and including Element 9. Attempting to sort beyond the highest
allowable element number common to both the primary or secondary
array generates error.

Unlike primary arrays, a direction sign [(+) or (-}] is mandatory
when you specify a secondary array. The direction of the sort in a
secondary array does not have to match that in the primary array.
Using the Arrays A$ and F$, the following sort command:

SYSTEM"RUN BSORT 6~+A$(1),-F$" [ENTER]
produces these results:

A$(1) A$(2) A$(3) A$(4) A$(5) A$(6)
--

JOHNSON JONES JONES JONES SMITH WILLIAMS
==

F$(1) F$(2) F$(3) F$(4) F$(5) F$(6)
--

CHARLES BOBBY BILLY BETTY SAMMY RICHARD
==

Note: The direction of the secondary sort array (in descending
order) does not affect the reordering of the primary array (ascending
order). However, any exact matches in the primary array sorts the
secondary array (first name array) in descending order.

Using Multiple Secondary Arrays

When using more than 1 name, separate secondary arrays with commas.

The order of the array names in the command line dete;mines how the
arrays reorder. In particular, the secondary array specified first

18

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
------------ TANDY COMPUTER PRODUCTS ------------

takes precedence. For example, examine the 3 arrays below:

A$(1) A$(2) A$(3) A$(4) A${5) A$(6) A$(7)
========:======:=================~=============:===========

SMITH BROWN JONES JONES JONES JONES JONES
==========================~================================

F$(1) F$(2) F$(3) F$(4) F$(5) F$(6) F$(7)
=~===

SAMMY ROBBY JOHN JAKE JOHN HERB HERM
--

I%(1) 1%(2) 1%(3) 1%(4) I%{5) 1%(6) 1%(7) ,,, --
1001 H~02 1003 1004 1(}06 1007

---~-----
Array A$ contains last names, Array F$ contains first names, and
Array I% contains ID numbers. Consider the results of the command:

SYSftM''RUN BSUK I 7 ,A$(i) ,+F$,-i%11 [ENTER]

A$(1)

BROWN

F$ (1)

ROBBY

1%(1)

1002

A$(2)

JONES

F$(2)

HERB

1%(2)

A$(3)

JONES

F$(3)

HERM

I% (3)

A$(4)

JONES

F$(4)

JAKE

1%(4)

A${5)

JONES

F$(5)

JOHN

1%(5)

1005

A$(6)

JONES

F$(6)

JOHN

I%(6)

1(}03

A$(7)

SMITH

F$(7)

SAMMY

I%(7)

1001
== = = = = == = = = === == = == == = = == === = = = == == = = ===== == = = == ==_.,,,•' = = === == =

First, BSORT sorts the last names in ascending order. If the last
names match exactly (as with JONES), BSORT determines the correct
ascending order by referring to the first names in the secondary
array F$. If 2 people have identical first and last names, BSORT uses
the ID number in the secondary array 1% to sort the identical names
in descending order.

19

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
----------- TANDY COMPUTER PRODUCTS -----------

If you transpose the arrays on the command line, you get different
results. For example:

SYSTEM"RUN BSORT 7,A$(1),-I%,+F$ 8 [ENTER]

A$(1) A$(2) A$(3) A$(4) A$(5) A$(6) A$(7)
===

BROWN JONES JONES JONES JONES JONES SMITH
===

F$(1) F$(2) F$(3) F$(4) F$(5) F$(6) F$(7)
===

ROBBY HERM HERB JOHN JAKE JOHN SAMMY
===

I%(1) 1%(2) I%(3) 1%(4) I%(5) 1%(6) I%(7)
===

1002 1007 1006 1003 1001
===

As in the previous example, the last names sort in ascending order.
However, since the I% array now follows the primary array, the
sorting characteristics of the I% array (ID numbers in descending
order) take precedence over the F$ array. If the names are identical,
the I% array determines their order.

Using Tag Arrays

In addition to using secondary arrays, you can specify tag arrays on
a sort command. If an array (other than the primary array) has no
directional sign, it is a tag array. Tag arrays do not affect the
results of a sort. Any reordering that occurs in the primary sort
array also occurs in a tag array.

If you use both tag and secondary arrays, specify secondary arrays on
the sort command line before tag arrays. If you include more than 1
tag array, separate them with commas.

20

f'JODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
------------ TANDY COMPUTER PRODUCTS ------------

If the following arrays are in memory:

A$(1) A$(2) A$(3) A$(4) A$(5) A$(6)
======:=:============:==============================

JONES JONES JONES WILLIAMS JOHNSON JONES
========~======================~-;=========~========

F$(1) F$(2) F$(3) F$(4) F$(5) F$(6)
=======~==

ROBIN BILLY BETTY RICHARD CHARLES BOBBY
=========~==

this command (using F$ as a tag array):

SYSTEM"RUN BSORT 6,A$(1),F$ [ENTER]

can produce these results:

A$(1) A$(2) A$(3) A$(4) A$(5) A$(6)
==

JOHNSON JONES JONES . JONES JONES WILLIAMS
==

F$(1) F$(2) F$(3) F$(4) F$(5) F$(6)
--

CHARLES ROBIN BILLY BOBBY BETTY RICHARD
==

BSORT sorts the last names in correct ascending order, but the tag
array F$ does not affect the order in which BSORT arranges the data.
Whenever exact data matches occur (as is the case with the name
JONES) reordering of these elements is random. To sort your
information more precisely, use a secondary sort array. If you want
only to shift information along with the array you sort, use a tag
array. /

21

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
------------ TANDY COMPUTER PRODUCTS ------------

MID$ Sorting

When sorting string arrays, you can specify a mid-portion of the
string as the sort key with primary and/or secondary arrays. This
allows you to sort a specified part of the string.

As an example, consider the following 2 string arrays:
L$(0) L$(1) L$(2) L$(3) L$(4)

===
D. BROWN R. SMITH T. JONES R. SMITH P. JONES
--

F$(0) F$(1) F$(2) F$(3) F$(4)
===
BR, DALE SM, BOB JO, TERRY SM, RICH JO, PETE
--

Array L$ contains a first name initial, followed by a period, a space
and a last name. Array F$ contains the first 2 characters of the last
name, followed by a comma, a space, and the first name. To sort the
array by last name/first name, type:

SYSTEM"RUN BSORT 5,L$(0)(4,7),+F$(5,6) [ENTER]
to achieve these results:

L$(0) L$(1) L$(2) L$(3) L$(4)
===

D. BROWN P.JONES T. JONES R. SMITH R. SMITH
===

F$(0) F$(1) F$(2) F$(3) F$(4)
===

BR, DALE JO, PETE JO, TERRY SM, RICH SM, BOB

L$ is the primary array, and F$ is the secondary array. Both arrays
are in ascending order.

The mid-string information, 2 integer numbers enclosed in
parentheses, immediately follows the subscript for the primary array.
For the secondary array, mid-string information immediately follows
the type declaration tag for the secondary array name. The first
number specifies the position at which to start sorting the

22

fl.ODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
----------- TANDY COMPUTER PRODUCTS -----------

string--in this case, the fourth character (the first character of
the last name). No comma separates MIO$ sort information from the
last piece of information associated with the array.

The second number indicates the number of characters to sort. In this
case, 7 characters of each string (starting at Position 4 of the
string) comprise the sort key for the primary sort array.

Similarly, mid-string information sorts the secondary array, F$,
beginning at Position 5 (the first character of the first name) in
each element of the array, and extending for 6 characters into each
string.

BSORT does not check the validity of the mid-string values if they
are less than 256. If the position starts at a point exceeding the
entire length of the string, that particular element of the array
receives a null value. If the MID$ position starts within the string,
but uses more characters than remain in the string as sort criteria,
BSORT uses only the remaining characters.

For example, if Array A$ contains these values:

A$(l)= 11 HI II

A$ (2) = 11 B YE 11

A$(3)= 11 THIS IS THE END 11

these commands produce the adjacent results:

1. SYSTEM"RUN BSORT 3,A$(1)(1,3)"
2. SYSTEM"RUN BSORT 3,A$(1)(2,4)"
3. SYSTEM"RUN BSORT 3,A$(1)(3,2)"

BYE HI THIS IS THE END
THIS IS THE END HI BYE
HI BYE THIS IS THE END

In Example 1, BSORT uses the first through third characters of each
string to sort the array. In Example 2, BSORT uses the seecond through
fifth characters of each string to sort the array. In Example 3,
BSORT uses the third to fourth characters of each string to sort the
array. Since the first element has only 2 characters, its sort value
is null; therefore, it appears first in ascending order.

23

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
------------ TANDY COMPUTER PRODUCTS ------------

Generating an Index Array

In some cases, such as reading data into an array from a random
access file, you may not want to physically reorder an array. You
use BSORT to create an index array contains the element numbers of
the sorted array. BSORT reorders the index array so its values
represent the sorted order of the elements in the primary array. For
example, assume that the following arrays are currently in memory:

P$(1) P$(2) P$(3) P$(4) P$(5) P$(6) P$(7)
===-====

WILLIAMS SMITH JONES BROWN GREEN JOHNSON RICH
==

I%(1) I%(2) I%(3) 1%(4) 1%(5) 1%(6) I%(7)
==

0 0 0 0 0 0 0
==

This sort command:

SYSTEM"RUN BSORT 7,*1%(1) ,P$(1) 11 [ENTER]

creates the index array I%:

1%(1) 1%(2) 1%(3) 1%(4) 1%(5) 1%(6) I%(7)
==

4 5 6 3 7 2 1

Although the sort command does not alter the primary sort array (P$),
the values in the index array (I%) reflect the sorted order of P$.
For example, 1%(1) has a value of 4.

24

M)0EL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
---------- TANDY COMPUTER PRODUCTS----------

If you want the ascending, sorted order of Array P$, access Element 4
of Array P$ first. To print the contents of Array P$ in sorted order,
use I% as an index:

FOR L%=1 TO 7
PRINT P${ I%(L%))
NEXT L%

or
FOR L%=1 TO 7
M%=I%{l%):PRINT P%(M%}
NEXT L%

To include an index array, specify an asterisk (*), followed by
the index array name after the number of items to sort. The array
must be a 1-dimensional, integer-type array with an explicit type
declaration tag. The integer subscript number indicates the starting
position of the indexed formation. The array must be as large as the
number of items it sorts.

The subscript number used with the index array does not necessarily
parallel the subscript number specified in the sorted array. For
example, assume that the following integer array exists in memory:

1%(1) 1%(2) 1%(3) 1%(4) 1%(5) 1%(6) 1%(7) 1%(8) 1%(9) I%(1U)
==

===-==-================

Using this as an index array, the following sort command on Array P$:

SYSTEM"RUN BSORT 4,*I%(6),P$(2)" [ENTER]
produces these results:

1%(1) 1%(2) 1%(3) 1%(4) 1%(5) 1%(6) I%(7) 1%(8) 1%(9) I%(1U)
==-=--=- =--------------

4 5 3 2 1U00
===--=-=----

This command sorts 4 elements (Elements 2-5) of the P$ array, and
stores the index information in the I% array, starting it Element 6.
It does not affect Elements 1-5 and lU, because the index array only
stores the sorted element numbers of the primary array (in this case,

25

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
----------- TANDY COMPUTER PRODUCTS -----------

Elements 2-5). You cannot store index information beyond the end of
the index array.

If the I% array contains 11 elements (0-10), this BSORT command
causes error:

SYSTEM"RUN BSORT 4,*1%(8), P$(2) [ENTER]

Finally, you can perform indexed sorts using all of the previously
defined sort parameters (for example, mid-string and secondary
arrays). Once you specify the index array in the sort command, the
syntax remains the same. Because BSORT does not reorder any arrays
used in an index sort, tag arrays are meaningless in the sort
command.

Sorting 2-0imensional Arrays

The same concepts applicable to I-dimensional arrays apply to
2-dirnensional arrays. To retrieve and sort the key information,
specify a row of the array, and the number of the column at which to
start the sort. The number of columns equals the number of elements
you want to sort. Therefore, reordering an array transposes an entire
column of data. ·

26

r«>DEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
----------TANDY CCMPUTBA PRODUCTS----------

For example, assume Array A$ contains:

COLUMN

1 2 3 4 5

1 DALE DAN DON DICK DOC
R 2 BROWN JONES SMITH GREEN PETERS

3 25 34 19 53 42
0 4 BOSTON BUTTE SALT PHIL PITT

5 03021 78654 23376 19769 16511
w 6 MA MT MO PA PA

7 REP REP CLIENT ADV STOCK

To sort this array by last name in ascending order, this BSORT
command:

SYSTEM•RUN BSORT 5,A$(2,l)• [ENTER]

produces these results:

COLUMN

1 2

1 DALE DICK
R 2 BROWN GREEN

3 25 53
0 4 BOSTON PHIL

5 03021 19769
w 6 MA PA

7 REP ADV

3 4 5

DAN DOC DON
JONES PETERS SMITH
34 42 19
BUTTE PITT SALT
78654 16511 23376
MT PA MD
REP STOCK CLIENT

The command indicates there are 5 items to sort; sorting begins at
Column 1 in Row 2, and continues for 5 columns. When BSORT moves
an element, it also moves the elements in the other rows'of the same
column.

To exchange positions of Columns 4 and 5 in the original A$ array,
issue the command:

SYSTEM"RUN BSORT 2,A$(5,4)• [ENTER]

27

MODEL 4 TRSOOS 6.02.0@ UTILITIES PACKAGE
----------- TANDY COMPUTER PRODUCTS -----------

This sort uses information in Row 5 as the key, begins at Column 4,
and includes 2 columns (Columns 4 and 5). Since 16511 is. less than
19769, a reordering occurs.

With the A$ array in memory, you can create an index array (I%)
sorting the information in Row 3 in descending order with the
following command:

SYSTEM"RUN BSORT 5,*I(l),-A$(3,l)" [ENTER]

1%(1) I%(2) I%(3) 1%(4) 1%(5)
==================================

4 5 2 1 3
--

When you index a 2-dimensional array, the index array stores the
column position of the sorted array, leaving the sorted array
unchanged.

Using 2-Dimensional Secondary and Tag Arrays

Using 2-dimensional secondary and tag arrays resembles sorting
2-dimensional arrays. There must be at least as many elements in the
secondary or tag array as there are columns in the primary array.

Tag arrays do not need subscripts. Reordering of columns in the tag
array corresponds to reordering in the primary array. The entire
column transposes, no matter how many rows in the array, with any
reordering.

The same reordering rules apply to 2-dimensional secondary arrays.
However, a secondary array requires a subscript indicating the number
of the key information. Assume that the following arrays exist in
memory:

A%(1) A$(2) A$(3) A$(4) A$(5)
===-====================================

BROWN ADAMS BROWN ADAMS BROWN

28

tlODEL 4 TRSDOS 6. 02. 00 UTILITIES PACKAGE
---------TANDY COMPUTER PRODUCTS---------

R 1
0 2
W 3

1

PRES
25
DALE

ARRAY B$

COLUMN

2

VP
53
DOC

3

MGR
34
DAN

4 5

SALES DIST
42 19
DICK DON

A$ is the primary array, and Row 3 of B$ is the secondary sort
array. The following BSORT command first sorts the data by last name,
then by first name:

SYSTEM•RUN BSORT 5,A$(1),+8$(3) [ENTER]

R 1
0 2
W 3

A$(1) A$(2) A$(3) A$(4) A$(5)
======================================

ADAMS ADAMS BROWN BROWN BROWN
======================================

1

ARRAY B$

COLUMN

2

SALES VP
42 53
DICK DOC

29

3

PRES
25
DALE

4

MGR
34
DAN

5

DIST
19
DON

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
----------- TANDY COMPUTER PRODUCTS -----------

In a BSORT command, you can use the same 2-dimensional secondary
array more than once, provided you specify a different row in each
case. In fact, if the primary array is 2-dimensional, you car. specify
a row other than the primary sort row as a secondary sort array. To
sort a 2-dimensional array (Z$) primarily by last name (Row 2), and
secondarily by first name (Row 1), use the following command:

SYSTEM"RUN BSORT 5,Z$(2,l),+Z$(1)" [ENTER]

You can also sort a 2-dimensional secondary array with mid-strings.
As is the case with a 1-dimensional primary array, the mid-string
information immediately follows the row subscript of the secondary
array. For example, in the command:

SYSTEM"RUN BSORT 10,XX%(2,5),+C$(3)(19,8)" [ENTER]

XX% is the primary array. BSORT sorts 1~ columns of Row 2, starting
at Column 5 (Columns 5-14). In C$, the secondary array, you sort
Columns 5-14 in Row 3. The sort key begins at Position 19 of each
element and extends for 8 characters (Columns 19-26).

Using a Variable to Pass the Sort Cormiand

A SYSTEM command cannot exceed 79 characters ir. the quotation marks.
BSORT allows you to include sort parameters as string variables. The
string variables can contain up to 255 characters.

For example, the following sort command replaces a lengthy number of
parameters with the variable PARM$:

PARM$ = "10,*II%(1) ,-AA$(4,l) (15,20) ,+AC#(3) ,-S0$(7) (13,8)"
SYSTEM .. RUN BSORT $PARM$"

Precede the string variable with a ($) in the system co~mand.

31}

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
----------- TANDY COMPUTER PRODUCTS -----------

t-1)0324--PROGRAM CONVERSION UTILITY

MJD324 converts MODEL III BASIC programs to a form that
M'.)DEL 4 BASIC can read. The MODEL III program must be on a
diskette formatted by either MODEL 4 TRSDOS or MODEL III
LOOS. To move a program from a MODEL III TRSDOS diskette to
a MODEL 4 TRSDOS diskette, use CONV. Store the MODEL III
program on a disk in compressed format. Do not save it in
ASCII.

Note: Some program commands and sequences which function
properly on the MODEL III do not work on the MODEL 4.
MOD324 attempts to flag every possible error situation.
However, it cannot guarantee that a program it converts will
work, even if it does not indicate manual corrections.

The syntax for MOD324 is:

MOD324 filespecl filespec2 [(parameter, •.•)]

files peel

filespec2

Parameters are:

MODIFY

CENTER[=n]

stores MODEL III program to convert in
compressed format. If you omit filespecl,
MOD324 prompts for it.

contains the converted program. If you omit
filespec2, MOD324 prompts for it. If the
filename already exists, MOD324 overwrites
it. If it does not exist, MOD324 creates it.

adjusts numeric constants in PRINT@
statements to the corresponding valu~ on the
MODEL 4 video. Does not adjust PRINT TAB
statements.

n indicates the additional offset value to
add to all PRINT@ positions changed by
MODIFY. If you include CENTER, you must
include MODIFY. If you omit n, MOD324
assumes 328 (4 lines, 8 columns).

31

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
----------- TANDY COMPUTER PRODUCTS -----------

PRINT

WIDTH [=n J

sends manual corrections to the printer. If
you omit PRINT, MOD324 displays manual
corrections on the display.

n specifies the number of characters per
printed line when you include PRINT. n may
be an integer in the range 9 to 255. Tf you
omit WIDTH, MOD324 assumes 80 characters per
printed line.

Parameters may be abbreviated to their first character.

General Information

MOD324 changes tokenized key words and symbols in the MODEL
III program to their corresponding ASCII representation in
the MODEL 4 program.

MOD324 removes values specifed in CLEAR statements because
on the MODEL 4, the CLEAR statement functions differently.
For example, MOD324 changes the MODEL III statement, CLEAR
5000 to CLEAR in the MODEL 4 program.

MOD324 inserts a space in MODEL 4 text after key words that
aren 1 t followed by information in parentheses (FOR, TO,
NEXT) and after variables or constants that precede a key
word, but are not separated from the key word by a
terminator. For example, in the statement: IF A%=10THEN
A%=5, MOD324 inserts a space between the 0 and the T.

The maximum line length in Model 4 BASIC is 254 characters.
When MOD324 adds additional spaces in a statement,/it can
cause the line length to exceed this limit. If that occurs,
MOD324 truncates the line and displays the truncated text.
Then, you can create a new line to add to the MODEL 4 BASIC
program that contains the truncated text.

Note: The truncation of a line can affect program logic.

Assume that the following line exists in a MODEL III
program:

32

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
---------- TANDY CDMPUTER PRDDUCTS ----------

10 FOR LL= lTO 10: FORLK=lT020: FORLP=lT03(}: LPR INTTAB (2(}) 11 This
is an example of a converted line being too
long" :LPRINTTAB (20) 11 The value of LL
is 11 ;ll:LPRINTTAB(20) 11 The value of lk
is 11 ;LK:LPRINTTAB(20) 11 The value of LP
is 11 ;LP:NEXTLP:NEXTLK:NEXTLL:PRINTTAB(2(})"Done 11

After the conversion M00324 stores the line in the Model 4
program as:

1(} FOR Ll=l TO 1(}:FOR LK=l TO 2ij:FOR LP=l TO 30:LPRINT
TAB(2(})"This is an example of a converted line being
too long 11 :LPRINT TAB(20) 11 The value of LL is";LPRINT
TAB(2(}) 11 The value of lk is 11 ;LK:LPRINT TAB(2@)"The
value of LLP is";LP:NEXT LP:NEXT LK:NEX

M00324 displays:

The following lines may need manual correction:

1(} TAB
10 -Line truncated, should be extended as follows:

T LL:PRINTTAB(2(}) 11 Done 11

In a MODEL III program, you may omit the word THEN in an
IF-THEN statement. For example:

IF A=l A=2

On the MODEL 4 this statement causes a syntax error. MOD324
flags any IF statement not followed by a THEN.

1'1)0324 does not change information that appears in the MODEL
III program file as ASCII, that is enclosed in quotation
marks, or that follows an apostrophe.

Some program statements that exist in MODEL III BASIC have
no meaning on the MODEL 4. Other program statements which
exist in both BASICs function differently in each.

tt()OEL III commands that MOD324 flags as possibly needing
manual correction are:

33

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
----------- TANDY COMPUTER PRODUCTS -----------

CLOAD
CMD
CSAVE
ERR
IF
INP
INPUT #-1, INPUT #-2
NAME
OUT
PEEK
POKE

POINT
POS
PRINT@
PRINT TAB
PRINT #-1, PRINT #-2
RESET
SET
SYSTEM
TIME$
USR

MOD324 flags every PRINT@ and PRINT TAB statement because
the video sizes differ between the Model III (64xl6) and
Model 4 (8~x24). The MODIFY parameter and the number you
specify for CENTER control how MOD324 adjusts values in
PRINT statements.

Program Usage

To convert a program, type M00324 [ENTER] at the TRSDOS
Ready prompt. MOD324 displays:

Input Filespec?
Output Filespec?

All entries must follow the rules associated with valid
filespecs. You may press [BREAK] in response to either
prompt to return to TRSDOS Ready. If your answer to these
prompts is incorrect, the screen displays the appropriate
error message.

The first prompt requests the name of the MODEL III program.
Enter the filespec. If you omit adrivespec, MODD324 searches
all active drives. If the file has an extension, include it.
MOD324 does not assume /BAS. ,_

The second prompt requests the name of the file to contain
the converted program. If the filespec does not exist,
MOD324 creates it. If the filespec exists, the converted
program overwrites that file. To assure that the file writes
to the proper place, include a drivespec with the output
filespec. If you omit drivespec, MOD324 writes the output

34

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
---------- TANDY CDMPUTER PRODUCTS----------

file to the first drive containing the file, or to the first
available drive if the file does not exist on any drive in
the system.

You can enter both filespecs on the command line. For
example, if you want to create the MODEL 4 program TEST/M4
on Drive 2 from the MODEL III program TEST/BAS on Drive 1,
enter the following command:

MOD324 TEST/BAS:l TEST/M4:2 [ENTER]

If you specify 1 filespec on the command line, MOD34 assumes
it is the MODEL III file and prompts for the output
filespec.

Assume that you have created the following MODEL III BASIC
program . and saved it in compresssed form under the fi lespec
SAMPLE /BAS:

10 CLEAR 5000:DEFINTA-N:DEFSTRS,T
2~ CLS:FORL = lTOl(J
30 PRINTTAB (5) 11 This is Line";L;"on the MOO III

video" ;TAB (45)"Position 45"
40 NEXT L

To convert this program for use on the MODEL 4 with the
filename SAMPLE/M4 on Drive 2, enter the following command:

M00324 SAMPLE/BAS SAMPLE/M4:2 [ENTER]

l'-00324 creates an ASCII file containing the converted
program and displays possible manual program corrections.
The following is a listing of the file SAMPLE/M4:

10 CLEAR:DEFINT A-N:DEFSTR S,T
2(} CLS;FOR L=l TO l(J
30 PRINT TAB (5) 11 This is Line";L;" on the MOD III

Video 11 ;TAB(45) 11 Position 45 11

4(} NEXT L

In Lines l(J, 20 and 30, MOD324 inserts spaces as needed.
fv00324 does not insert a space in Line 40 because there was
already a space between the Tin NEXT and the variable L.
fv00324 strips the value in the CLEAR statement.

35

t()OEL 4 TRSOOS 6.02.00 UTILITIES PACKAGE
---------- TANDY COMPUTER PRODUCTS----------

After the conversion, MOD324 displays:

The following lines may need manual correction:

3(} TAB,TAB

File output completed

As MOD324 creates the MODEL 4 file, it displays line numbers
that contain possible problem key words. See the previous
list. Commas separate multiple key words on the same line.
In this example, the key words PRINT TAB appear twice in
Line 3(}. When TAB appears in a manual correction listing,
it implies a PRINT TAB sequence. IF you use TAB with an
LPRINT statement, MOD 324 does not flag it.

After MOD324 creates the MODEL 4 file, you can make manual
corrections. In this example, you can run the program as it
is. However, if MOD324 flags any key words (such as SET)
because they do not exist in MODEL 4 BASIC, remove them.
Modify lines that contain key words which cause
unpredictable results (such as a POKE of video ram).

ft1JDIFY and CENTER Parameters

Consider the following MODEL III program saved in compressed
format as CENTER/BAS. It draws a box on the first 15 lines
of the screen, and displays messages on the last line and in
the middle of the box:

5 CLEAR 2000
10 CLS
20 PRINT@0,CHR$(15l);STRING$(62,131);CHR$(171)
30 PRINT@64,CHR$(149):PRINT@l27,CHR$(170)
40 PRINT@128,CHR$(149):PRINT@l91,CHR$(170)
50 PRINT@l92,CHR$(149):PRINT@255,CHR$(170)
60 PRINT@256,CHR$(149):PRINT@319,CHR$(170)
70 PRINT@320,CHR$(149):PRINT@383,CHR$(170)
80 PRINT@384,CHR$(149):PRINT@447,CHR$(170)
~ PRINT@448,CHR$(149):PRINT@511,CHR$(170)
100 PRINT@512,CHR$(149):PRINT@575,CHR$(170)
110 PRINT@576,CHR$(149):PRINT@639,CHR$(170)
120 PRINT@640,CHR$(149):PRINT@703,CHR$(170)

36

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
---------- TANCV COMPUTER PRCCUCTS ----------

130 PRINT@704,CHR$(149):PRINT@767,CHR$(170)
130 PRINT@768,CHR$(149):PRINT@831,CHR$(170)
150 PRINT@832,CHR$(149):PRINT@895,CHR$(170)
170 PRINT@896,CHR$(18l);STING$(62,176);CHR$(186);
175 PRINT@96(3, 1111 ;TAB(l5) 11 Press Any Key to end this

Program11 ;

180 PRINT@473,"Center of Box";
190 I$=INKEY$: IFI$<> 1111 THENEND
2()0 FORL + 1 TO3(): NE XTL
210 PRINT@473, 11

220 I$=INKEY$:IFI$<> 1111 THENENO
23@ FORL=lTO20:NEXTL:GOTO180

It • .

The following command converts CENTER/BAS to CENTER/M4:

MOD324 CENTER/BAS CENTER/M4:3 [ENTER]

MOD324 displays:

File CENTER/M4:3

The following lines may need manua1 correction:

20 PRINT@(0)
30 PRINT@(64),PRINT@(l27)
40 PRINT@(l28),PRINT@(l91)
50 PRINT$(192),PRINT@(255)
60 PRINT@(256),PRINT@(319)

.
140 PRINT@(786),PRINT@{831)
150 PRINT@(832),PRINT@(895)
170 PRINT@(896)
175 PRINT@(960),TAB
180 PRINT@(473)
210 PRINT@(473)

All PRINT@ commands use numeric constants to represent print
positions. If you run CENTER/M4 without performing manual
corrections the program does not draw a box on the screen.

To convert a MODEL III PRINT@ position to a MODEL 4 PRINT@
position:

37

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
---------- TANDY COMPUTER PRODUCTS----------

1. Divide the Model III positon by 64.

2. Multiply the quotient by 80 and add the remainder
to that product. The result is the MODEL 4 PRINT@
position.

To convert all PRINT@ positions, use the MODIFY parameter.
The MODEL 4 program contains the adjusted PRINT@ values.

To convert the program CENTER/BAS and include the MODIFY
parameter to convert screen positions, type:

t'K:>0324 CENTER/BAS CENTER/M4:3 (M) [ENTER]

MOD 32 4 dis pl ays :

File CENTER /M4: 3

The following lines may need manual correction:

20 PRINT@(0=>0)
30 PRINT@(64=>80),PRINT@(l27=>143)
40 PRINT@(l28=>160),PRINT@(191=>223)
50 PRINT@(l92=>240),PRINT@(255=>303)
60 PRINT@(256=>320),PRINT@(319=>303)
70 PRINT@(320=>400),PRINT@(383=>463)
80 PRINT@(384=>480),PRINT@(447=>543)
90 PRINT@(448=>560),PRINT@(511=>623)
100 PRINT@(512->640),PRINT@(575=>703)
110 PRINT@(576=>720),PRINT@(639=>783)
120 PRINT@(640=>800),PRINT@(703=>863)
130 PRINT@(704=>880),PRINT@(767=>943)
140 PRINT@(768=>960),PRINT@(831=>1023)
150 PRINT@(832=>1040),PRINT@(895=>1103)
170 PRINT@(896=>1120)
175 PRINT@(960=>1200),TAB
180 PRINT@(473=>585)
210 PRINT@(473=>585)

The adjustments made to Line 40 translate the original
PRINT@ position of 191 into 223. Running the program
CENTER/M4 draws a box in the upper left corner of the
screen. You do not need to manually correct the PRINT@
positions. Because PRINT TAB commands (see Line 175) refer
to column position only, MODIFY does not adjust them.

38

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
---------- TANDY COMPUTER PRODUCTS----------

Because the MODEL 4 screen is larger than the MODEL III screen,
you can overlay a MODEL III screen--up to 8 rows and 16
columns--onto a portion of the MODEL 4 screen. To further adjust
PRINT@ positions use the CENTER parameter with the MODIFY
parameter. The default value for the CENTER parameter is 328 (4
rows, 8 columns).

To convert CENTER/BAS and include the MODIFY and CENTER
parameters to draw the box in the center of the MODEL 4 screen,
type:

MOD324 CENTER/BAS CENTER1/M4:3 (M,C) [ENTER]

MOD324 displays:

Fi 1 e CENTER/M4: 3

The following lines may need manual correction:

20 PRINT@(0=>328)
3ij PRINT@(64=>408),PRINT@(l27=471)
40 PRINT@(l28=>488),PRINT@(l91=>551}
50 PRINT@(l92=>568),PRINT@(255=>631)
6~ PRINT@(256=>648),PRINT@(319=>711)
70 PRINT@(32@=>728),PRINT@(383=>791)
80 PRINT@(384=>8g8),PRINT@(447=>871)
%J PRINT@(448=>888),PRINT@(511=>951)
100 PRINT@(512=>968),PRINT@(575=>1~31
110 PRINT@(576=>1~48),PRINT@(639=>1111)
120 PRINT@(640=>1128),PRINT@(7@3=>1191)
130 PRINT@(7g4=>1208),PRINT@(767=>1271)
140 PRINT@(768=>1288),PRINT@(831=>1351)
150 PRINT@(832=>1368),PRINT@(895=>1431)
170 PRINT@(896=>1448)
170 PRINT@(960=>1528),TAB(l5=>23)
180 PRINT@(473=>913)
210 PRINT@(473=>913)

_,

In Line 40, the original PRINT@ position of 191 translates into
551. CENTER1/M4 draws a box in the center of the screen (with
the upper left corner of the box positioned at Row 4, Column 8).
The program does not require manual correction because CENTER
adjusts PRINT TAB values.

39

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
---------- TANDY COMPUTER PRODUCTS----------

The CENTER parameter affects column positioning by moving the
entire screen. It adjusts PRINT TAB commands (see line 175) by
adding the value of the column offset to the numeric constants in
PRINT TAB statements. If you use 0 as a column offset (CENTER=8vJ,
160, 24(}, etc.), CENTER does not have to adjust PRINT TABS. To
determine the column offset, divide the value specified with
CENTER by 80. The remainder after that division is the column
offset.

Although you can use any value with CENTER, some values produce
undesirable results. Avoid offsets of more than 8 rows and/or 16
columns. This table lists some practical CENTER value ranges and
the resulting row offset:

CENTER=Range

0-16
BvJ-96

160-176
240-256
320-336
4()0-416
480-496
560-576
64{}-656

Row Offset

0
1
2
3
4
5
6
7
8

When PRINT@ and PRINT TAB statements use numeric expressions as
print position values, MOD324 does not adjust the values. This
MODEL III program, saved in compressed format as CNTLOOP/BAS,
draws a box on the video using a FOR-NEXT loop.

5 CLEAR 2vJ00
1(} CLS
20 PRINT@0,CHR$(151);STRING$(62,131);CHR$(171)
25 FORL =1T013:Al=L*64:PRINT@Al,CHR$(149):PRINT@Al+63,
CHR$(170) :NEXTL
170 PRINT@896,CHR$(18l);STRING$(62,176;CHR$(186);
172 MC$="Center of Box":MB$="Press Any key to end this
Program" /
174 Ml=LEN(MC$):M2=LEN(MB$):CM=7*64-(Ml/2)
175 PRINT@960, 1111 ;TAB((64-M2)/2);MB$;
18(} PRINT@CM,MC$;
190 I$=INKEY$:IFI$<>" 11 THENEND
200 FORL=lT030:NEXTL
210 PRINT@CM,STRING$(Ml,32);
220 I$=INKEY$:IFI$<>" 11 THENEND
230 FORL =1Tb20:NEXTL:GOT0180

MJDEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
---------- TANDY COMPUTER PRODUCTS----------

To convert this program, type:

r-tl0324 CNTLOOP/BAS CNnOOP/M4:3 (M,C) [ENTER]

MOD 32 4 di s p 1 ays :

File CNTLOOP/M4:3

The following lines may need manual correction:

20 PRINT@(0=>328)
25 PRINT@{EXP),PRINT@{EXP)
170 PRINT@(896=>1448)
175 PRINT@(960=>1528),TAB(EXP)
180 PRINT@(EXP)
210 PRINT@(EXP)

MJD324 adjusts the value in Line 20. Because the print
position in Line 25 is a numeric expression, it does not
change that value in CNTLOOP/M4. It displays (EXP) for the
numeric expression and MOD324 retains the values of the
MODEL III program.

41

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
---------- TANDY COMPUTER PRODUCTS----------

BLANK PAGE

42

t,UDEL 4 TRSDOS 6.02.0~ UTILITIES PACKAGE
----------- TANCV COMPUTER PRODUCTS -----------

UNKILL--RESTORE A PREVIOUSLY DELETED FILE

REMOVE and PURGE reset bits in the directory entries and
reset the HIT and GAT. They do not erase a fi1e. If you do
not overwrite the directory entry of the file with another
entry, and do not reallocate the space it occupies, UNKILL
can restore a file deleted with REMOVE or PURGE. The syntax
is:

UNKILL filename/ext:d

There are no parameters and no abbreviations are allowed.
Type the command, followed by <ENTER> at the TRSDOS Ready
prompt.

The filename, extension, and drivespec must match the
previous file. If you omit drivespec, UNKILL assumes Drive
0. It does not search other active drives. If the file
contains a password, UNKILL restores it.

To resore the previously deleted file ACCOUNT/DAT on Drive
1, type:

UNKILL ACCOUNT/OAT:1 [ENTER]

If UNKILL is successful, the screen displays:

File successfully restored.

Error Messages

I 11 ega 1 F i1 en ame

Check the spelling of the filename or the syntax and try
the command again.

Directory Read Error

Part or all of the directory is unreadable. Try the command
again. If it produces the same error, change drives and try
the command again. If the same error occurs on more than 1
drive, you cannot recover the file because of a faulty
diskette.

43

MODEL 4 TRSDOS 6.02.0~ UTILITIES PACKAGE
----------- TANDY COMPUTER PRODUCTS -----------

Directory Write Error

UNKILL cannot verify the attempted write. Follow the
procedure for Read Error.

File Already Alive

The file is still active. If the deleted file has the same
filename as an existing file, RENAME the existing file and
try the command again.

No file by that name

No such filename is in the directory. If another file has
already overwritten the directory entry, you cannot
reactivate.

Cannot Unkill File

Another file is using the disk space of the deleted file.
You cannot reactivate.

C an ' t L og i n D i s k

Check the drive. A number of things can be wrong, such as
no disk in the drive or the drive door isn't closed.

44

f.ODEL 4 TR SOOS 6. 02. 00 UTILITIES PACKAGE
----------- TANDY COMPUTBA PRODUCTS -----------

THE BASIC ANSWER USER GUIDE

Introduction

The BASIC Answer, (TBA) is a processing utility designed to help
you create meaningful and structured BASIC programs. Use TBA
only with the Model 4 TRSDOS operating system, version 6.02.00
or later. TBA uses all the commands and concepts available in
interpretive BASIC, plus additional concepts which further
define and structure program code. This is especially useful
when you debug or modify rarely used programs.

This User Guide explains syntax and defines statements you need
for the TBA processor. The accompanying tutorial manual contains
detailed explanations; examples of processing an.d exercises to
aid the beginner; an explanation of what the processor does;
concepts of program structure; rationale for syntax; and ideas
for applications of some processor concepts.

To use TBA, type TBA [ENTER] at the TRSOOS Ready prompt. No
parameters are a 11 owed on the command 1 ine.

Creating Source Code

To create a source code, you can use a word processor such as
SCRIPSIT, SUPERSCRIPSIT; a text processors such as ALEDIT; or
the BASIC Interpreter. Save the source file in ASCII format. TBA
allows a maximum source line of 240 characters.

Upper and Lower Case Usage in Source Code

As in the BASIC Interpreter, TBA converts some lower case text
to upper case, such as characters not within quotation marks or
remark statements. You can override this by including the
Differentiate Case (DC) parameter. When you include DC, TBA
interprets identical letters, in identical words, but with
unmatched cases as distinct. For example, the word LOOP, Loop,
loop and LOop are 4 unique labels, variables or expressions.

45

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
----------- TANDY COMPUTER PRODUCTS -----------

Labels

When you create programs with BASIC, you include line numbers in
the statements. With TBA you use labels to reference locations
or branches in source code. When you use a label to identify a
procedure, it is the first phrase on a line and may be followed
by a space, colon, or carriage return. For example:

@DELAY.LOOP
FOR LOOP%= 1 TO 2000: NEXT

RETURN

the first line identifies the procedure @DELAY.LOOP. The second
line contains the BASIC statements in the procedure.

Other BASIC statements may follow identifying labels. Separate
the label from the first BASIC statement with a colon. For
example:

@DELAY.LOOP FOR LOOP%= 1 TO 2000: NEXT
RETURN

When you specify a label in a statement, it indicates a branch
to the procedure defined by the label. For example:

PRINT MESSAGE$(MESSAGE.SUB%) : GOSUB @DELAY.LOOP: CLS

IF IN$= CHR$(13) THEN GOTO @PROCESS.INPUT

GOSUB @GET.KEYBOARD

Creating Labels

A label may contain up to 15 characters. The first character of
a label is an@ symbol. The second character must b.e a letter.
It may be followed by 12 other characters. The last 12
characters may be a letter, number, or period (.), or underline
(_). You cannot use any other special characters or spaces.

Legal labels include:

@Input
@get.a.record
@Etc. etc .etc •..

@Process.input
@playitagainSam
@A.numberl

46

@RETRY INPUT
@get the money
@Print_period.

~DEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
----------- TANDY COMPUTER PRODUCTS -----------

Il1ega1 labels include:

@1. for. the. money
@GET NAME
@ ... de1ay
@LINEINPUT#l

KYBD.INPUT

Variables

leading number;too long
space in label
leading special character
unauthorized character
leading<@> missing

TBA uses variables in the same way BASIC uses them. Variable names
may contain 3 to 15 characters. The first character of a variable
must be letter. The remaining characters can include letters,
numbers, periods (.}, or underlines (). The last character must be a
type declaration tags defining the kind of data that the variable may
contain. Type declaration tags include% for an integer, ! for a
single precision,# for a double precision, or$ for a string
variable.

TBA prohibits the use of certain BASIC reserved words as variable
names. These include 2 character BASIC keywords (FN, ON, AS, IF, TO);
BASIC keywords ending with a declaration tag (TIMES, MKD$, PRINT#,
etc.); and any word in which the first three letters are REM. You can
embed reserved words in a variable.

Examples of legal variables

Record .Number%
LOOP%
Money.owed!
IF. done%

Illegal variables include:

TO%
FLAG END%
end.of .sequencel
1st. record%
input#

Total.due#
LOOP%

LAST NAME$
LOOP-2%
Start.ti me$
X. Y FUNCTION

TAX#
order#

47

reserved word violation
no spaces allowed
too long, no tag
incorrect lead character
reserved word violation

MODEL 4 TRSDOS 6.02.0~ UTILITIES PACKAGE
----------- TANDY COMPUTER PRODUCTS -----------

You should surround variables with spaces, nonalphanumeric characters
such as parentheses and commas, or math and relational operators to
prevent misinterpretation.

Global Variable Definitions and Implementation

You can use global varaibles throughout the entire program. Global
varaible definitions must be the only statement on a line. The line
must begin with an equal sign(=) followed by the variable name. End
the definition line with a carriage return. To define more than 1
global variable, separate them with commas. For example:

=LOOP%,LOOP1%,TOTAL#,START.TIMES$

defines the gloabal varaibles LOOP%, LOOP1%, TOTAL#, and START.TIME$.

Local Variable Definition and Implementation

A local variable has meaning only in the subroutine where you define
it. Its value and purpose relates to that procedure alone. Local
variables cannot pass information to and from the main body of a
program.

Local variable definitions immediately follow the procedure label on
the same line. Follow the procedure label with an equal sign= and
the variable name. To define more than one local variable, separate
the variable names with a comma. End the line with a carriage return.
Each procedure allows 1 line of local variable definitions in the
proper syntax:

@INKEY.INPUT=LOOP%,INK$,AT%,FIELD.LEN%

defines the local varaibles LOOP%, INK$, and FIELD.LEN in the
procedure @INKEY. INPUT. .-"

Array Variables

Define array variables as you define other global or local variables.
Array names must conform to the rules for variable names. Use a DIM
statement to declare the array size if it contains more than 1~
elements.

48

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
---------- TANDY COMPUTER PRODUCTS-----------

Use the following type of routine to avoid the Redimensioned Array
error when dimensioning a local array that contains more than HJ
elements:

WHILE ARRAY$(0) <> 11 DIMENSIONED"
ERASE ARRAY$
DIM ARRAY$(36)
ARRAY$(0) = 11 DIMENSIONE0 11

WEND

The REM Statement

If a REM statement is the first text on a line, TBA passes the line
to the object code. If REM appears later in a line, TBA does not
recognize it properly and can generate an error. To pass a remark
statement to the object code, use REM at the beginning of a line.

If a line begins with an apostrophe (1), TBA deletes the entire line.
If there is an apostrophe in the middle of a line, TBA deletes the
remaining text on that line. To .use a remark in source code only, use
an [• J.

The RETURN Statement

TBA uses RETURN to signify the end of 1 subroutine and the beginning
of the next. Therefore, use the RETURN statement once in a procedure.
It must be the last statement in a procedure. You can precede the
RETURN statement with a label, as in

@EXIT.INPUT: RETURN.

TBA Directives

You can embed dircetives in the source code to modify the output of
TBA. The directive and its parameters must be the only statement on
the line. Directives begin with the asterisk {*)character.The
directives are *PRLINES, -kl_IST ON/OFF, *PAGE, *TITLE, *IF,
*expression, and *END.

*PRL INES [n]

49

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
----------- TANCY COMPUTER PRODUCTS -----------

n specifies the number of lines per page to print. n can be a
number in the range 2(1 to 254. If you omit n, PRUNES assumes 56.
*PRLINES sends the printer a top-of-form character (X'OC') after n
lines. -

To use *PRLINES, activate the TRSDOS printer filter FORMS/FLT. Set
the PAGE and LINES parameters to the physical size of the page,
usually 66. Use the CHARS parameter to set the number of characters
per line. If you omit CHARS, FORMS/FLT assumes 132.

*LI ST [ON /OFF]
toggles the process listing on and off. If you omit ON and OFF, *LIST
assumes ON.
*PAGE
sends a top-of-form character (X'0C') to the printer, when the source
code encounters *PAGE.

*TITLE string
prints a header at the top of each page. string can be up to 14
characters and you must enclose it in quotes. The header prints in
the form:

BASIC Answer 11 string 11 September 21, 1982 12:03 A.M. Page 1

*IF, *END, and *expression
process source code on a conditional basis. *IF indicates to test for
the presence of expression. An expression is a token that you may
include as a response to the Directives prompt or as a source code
statement. *IF checks to see if you have included expression. If
so, TBA includes the source statements between *IF and *END.

expression is a phrase that conforms to the same rules as
variables, but does not have a declaration tag. To specify
exoression in the source code, precede expression with an*· It
must be the only statement on a line. You may also incJude
exeression in response to the Directives? prompt. Wheri you do so,
omit the asterisk.

*END signifies the conclusion of the conditional block that begins
after the previous *IF expression statement. It appears alone on a
subsequent line.

You cannot nest *IF/*END in other *IF/*END directives.

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
----------- TANDY COMPUTER PRODUCTS -----------

Starting TBA

TBA does not allow you to include filespecs or parameters on the
command line. It prompts you for them. This section explains how to
respond to these prompts. If your response is invalid, TBA redisplays
the prompt. To terminate TBA and return to TRSDOS press [BREAK] as
a response to any of the prompts.

To enter TBA, type TBA at the TRSOOS Ready prompt.

The prompts are:

Source Filespec ?

Type the filespec of the the ASCII file you want to process. If you
omit the extension, TBA assumes /TBA.

Object Filespec ?

Type any legal filespec or press [ENTER]. If you press [ENTER],
TBA assumes source fi lespec/BAS.

Processing Parameters?

Press [ENTER] to omit parameters or specify 1 or more parameters to
control processing. If you include more than 1, separate them with
commas. If you press <ENTER>, TBA displays processing information
on the screen.

Processing Parameters:

LP prints processing information on the line printer.

TO displays only the object code.

NL indicates no listing. TBA does not print processing information
on the screen or line printer.

NX omits a cross reference listing.

51

MODEL 4 TRSOOS 6.02.00 UTILITIES PACKAGE
----------- TANDY COMPUTER PRODUCTS -----------

DC omit upper to lower case conversion in variables, labels, and
expressions.

FC removes extra spaces from the object code.

NOTE: Omit the FC parameter if you intend to run the object files on
the Model 4 because it eliminates spaces surrounding reserved words.
Use FC to create output files for a BASIC which does not require such
spaces, for example, Model III BASIC.

The last prompt is:

Directives?

TBA is prompting you for an expression that the source code uses in
*IF directives. To omit expressions, press [ENTER]. To include
expressions, type 1 or more expressions separated by commas.
After you press [ENTER] to terminate the expressions, TBA
redisplays the directives prompt. You can enter more directives or
press (ENTER]. The directives prompt repeats until you press
[ENTER] as the first character of the input line.

TUTORIAL GUIDE

Introduction

TBA procceses non-executable text, referred to as source code. The
source code must be in a file in ASCII format. TBA processes the
source code into object code, an executable program. You can run this
object file as a BASIC program.

In your source code for TBA, you can use any of the BASIC commands.
Since TBA processes the source code into object code,.,you need to
follow some guidelines. This section details the differences between
writing BASIC programs and writing source code.

Labels

Use labels instead of line numbers in the source code. A label
identifies a reference location in TBA just as line number does in
BASIC. The label identif1es the code that follows it. When you use

52

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
----------- TANDY COMPUTER PRDDUCTS -----------

that label in a branching statement, TBA transfers program control to
the code following the label.

A label may contain up to 15 characters. The first character of a
label is an@ symbol. The second character must be a letter. It may
be followed by 12 other characters. The last 12 characters may be
letters, numbers, a period (.)~ or an underline (). Use the period
and underline to break up words within the labels-to improve
readability. You cannot use any other special characters or spaces.

Valid labels include:

@field.bufferl
@check . f i 1 e
@Get.A.Record

Invalid labels include:

@strobe.kbd
@CHECK.FILE
@ROUTE. TAKEN001

@Process data
@back to -TRSDOS
@find-PRIME

@1.character leading character not alpha
#field.buffer first character not@
@check/file incorrect special character
@input char no spaces allowed
@field@buff @ sign within label
@point-taken incorrect special character

TBA converts lower case characters to upper case characters except in
REM statements or within quotation marks. To distinguish an upper
case label from a lower case labe1, include the DC parameter. If you
include DC, TBA references the labels @CHECK.FILE and @check.file as
2 distinct labels.

If you include the DC parameter, use the label exactly as you defined
it originally--a precise character for character match. If you omit
the DC parameter, use variable names that are different from each
other in more than case of the characters. Decide whether to
distinguish between upper and lower case before you wriJe source
code.

Since labels are analogous to line numbers, you can only define a
label once within the source code. A label is the first text on a
line, unless it acts as a branch reference. Then it follows the
appropriate BASIC branching keyword. For example, GOTO @PLAN.3, GOSUB
@INPUT.PROCESS; are branching references.

In most high-level languages, the term procedure denotes a block of
code referenced by a label. In BASIC, these procedures are called

53

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
----------- TANDY COMPUTER PRODUCTS -----------

subroutines. Because TBA source code is not BASIC code, TBA
documentation uses the term procedures rather than subroutines.

This program uses normal BASIC syntax. The procedure flashes a
message on the screen until you press [ENTER]. This example
represents actual source code TBA processes: ·

@start.program
' *** Define Variables for TBA processing***
=loop%, in$
I

gosub @flash.message
@end.program
stop
I

@fl ash .message
els
for loop% = 1 to 20

in$ = inkey$
if in$= chr$(13) then goto @end.flash.mssg

next loop%
print @(10,10),"Flashing Message - Press <ENTER> to continue"
for loop%= 1 to 50

in$ =inkey$
if in$= chr$(13) then goto @end.flash.mssg

next loop%
goto @flash.message

@end. fl ash .mssg
return

@start.program and @end.program are reference points in the main
portion of the program. Because these labels are not the object of a
branching instruction, they are little more than commentary entries
in this program. To conditionally execute the various portions of the
main program, expand this program with branching references to both
labels.

@flash.message indicates the start of the flashing message procedure
to you and TBA. The main program typically references a procedure in
a branching instruction. In this program, the reference is GOSUB
@flash.message.

The RETURN statement signifies the end of a procedure. It must be the
last statement in a procedure. To exit the procedure from anywhere

54

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
----------- TANDY COMPUTER PRODUCTS -----------

el$e within the procedure, you must branch to a label immediately
preceding the RETURN.

In this program, @end.flash.mssg informs you of the end of the
procedure and serves as a label for branching to the end of the
procedure. RETURN informs TBA of the end of the procedure and returns
contro1 to the program statement immediately following the call to
the procedure.

The lines containing the statements GOTO@fla.sh.message and GOTO
@flash.end show how to reference a label as a point of transfer
within a procedure.

To include another statement in a line after a label reference,
separate them by a non-alphanumeric character, usually a space or a
colon. This distinguishes the label from the next statement. For
example, to reference the procedure on a specific condition, use:

if a=l@ then gosub @flash.message else a=a+l

If you omit the space between the 1 abe 1 @fl ash .mess age and the ELSE,
TBA interprets ELSE as part of the label name. This causes an error.

There are 3 advantages to using labels:

labels improve readability
labels are easier to remember than line numbers
labels make it easier to add additional code

In a BASIC program, to add additional code to the subroutine that
begins at Line 1000, you must add the code at Line 995 and change all
references to Line 1000 to Line 995 or renumber those lines. To add
additional code to a procedure, insert the additional code between
the procedure label and the first statement in the procedure. A
statement such as GOSUB @flash.message (instead of GOSUB .. 1000)
informs you of the next sequence of events. ·

Choose labels that describe the function of the routine. For example,
@flash.mssg is more informative that @routine2.

BASIC lets you merge programs and routines together, but you still
need absolute 1 i ne references. When you write source code, you can
merge procedures for different programs with the main text of the
program without absolute line number references. With TBA, you can

55

MODEL 4 TRSOOS 6.02.00 UTILITIES PACKAGE
----------- TANDY COMPUTER PRODUCTS -----------

create a library of procedures to use over and over again with many
different programs.

You use labels instead of line numbers when you write source because
TBA inserts line numbers into the object code. It assigns lines
numbers to all lines in the source code.

Using the @flash.mssg routine as an example, assume that after
processing, TBA assigns line number 500 to the first CLS line in the
procedure. The object code refers to this source code label as GOSUB
500 or GOTO 5~0. If you include absolute lines numbers in the source
code, TBA does not change them. They may produce an "Undefined line
number" error mess age.

Knowing the proper syntax for defining and referencing labels enables
you to build and maintain structured, easy to follow, meaningful code
that differs significantly from BASIC.

Procedures

The main body of a program flows logically using loops and routines
that control specific operations on the data. For instance, it prints
prompting messages or performs calculations based on the data the
program uses. Usually, TBA limits branching to a loop operation, or a
movement from a main menu to a specific function of the program and
back again.

The procedure completes functions at different logical points
throughout the program. For instance, a block of code that controls
the input of all data to a program is 1 example of a procedure.

Since the main body of the program accesses a procedure.~ write
procedures so that various functions in the main body of the program
can use them. You can write procedures so that more than one program
can use them. The more generic a procedure is, the more you can apply
it to all programs.

A procedure accepts and retrieves data. Then, the main body of the
program manipulates or makes decisions about it. A procedure commonly
sets conditions which the main body of the program evaluates. The
main body of the progra~ makes decisions based on conditions the

56

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
----------- TANDY COMPUTER PRODUCTS -----------

procedure sets. A procedure never makes decisions based on conditions
in the main body of the program.

limit branching statements in a procedure to a branch within the
procedure, not to a point in the main body of the program. To exit a
procedure, use RETURN.

Use GOSUB to reference procedures from the main body of the program.
Use GOTO to branch to another label in the main body of the program.

Variables

Model 4 BASIC allows 40-character variable names and Model III BASIC
allows 2-character variable names. Model 4 BASIC does not compress
the variable names in memory or on disk. A program with long variable
names executes slower and requires more space on disk.

Variable names in TBA can contain up to 14 characters. This helps to
make programs more descriptive and meaningful. TBA processes variable
names into unique 2-character variable names. They do not decrease
efficiency in memory usage or speed, or decrease the transportability
of the object code to other BASICs.

BASIC assumes single-precison numerics if you omit a type declaration
tag. For example, A= B + C, assigns storage for single-precision
numbers, even if integer storage is adequate. BASIC program
statements, such as DEFINT A-C, allow the programmer to change the
default.

In TBA source code, you must use a type declaration tag as the last
character of the variable name. There is no default. This encourages
storage efficiency.

TBA supports 2 different types of variables: global and f~cal.
Global variables are known throughout the program. Local variables
are known only within the procedure in which you define them.

You can use the same variable name in more than 1 procedure if you
define that variable as a local variable in each procedure. Using it
in 1 procedure does not affect its value in another procedure. You
can also define the same variable name as a global variable without
affecting the local variable. TBA recognizes each of the global and
local variables as a distinct variable.

57

MODEL 4 TRSDOS 6.02.0~ UTILITIES PACKAGE
----------- TANDY COMPUTER PRODUCTS -----------

Vari able Names

The first character of a variable name is a letter. The last
character must be a type declaraion tag (%, #, !, or$). You can use
any combination of letters, numbers, a period (.), or underline (_)
between the first letter and type declaration tag. The type
declaration tags represent the following types of variables:

% Integer
! Single Precision
Double Precision
$ String

Variable names less than 2 characters long (excluding type
declaration tags) require special handling.

If you do omit the DC parameter, maintain consistency in using upper
and lower case when you define and reference variable names. The
variable names LOOP1% and loopl% can represent 2 different variables.

Valid variable include:

Loopl% First.name$
loop1% last name$
loop1$ tot a T.doll ars#
Account total# Spvariable!

Using a different type declaration tag with the same variable name
creates unique and distinct variables. If you omit the type
declaration tag in a variable name, TBA issues a "Definition Format"
error.

When declaring a variable name, you cannot use:

2-character BASIC keywords (such as IF, OR, ON) .,,.,..
BASIC keywords that end with a type declaration tag
(such as TIME$,MKD$ INPUT#)
a variable whose first 3 characters are the letters REM

You can embed these BASIC keywords in a variable name. For example,
realtime$, spremember%, ifset# are valid variable names. You can use
any BASIC keyword that is longer than 2 characters and does not end
with a type declaration tag. For example, goto% and lset! are

58

ft()DEL 4 TRSDOS 6.02.0~ UTILITIES PACKAGE
----------- TANDY CDMPUTIHI PRODUCTS -----------

valid variable names. If you use an invalid variable name, TBA
issues an II Illegal Vari ab le" error.

Defining Variables

Before you use any variables, define them in a definition statement.

To define global variables, begin a line of source code with an equal
sign (=) followed by the variable or list of variables to define. If
you want to define more than 1 variable, separate the variables with
commas. The global variable definition statement must be the only
text on a line. This example illustrates how to define 6 global
variables:

=loopl%, loop2%,totaldollarsf,firstname$,lastname$,spvariable!

The variables loopl% and loop2% are integer; totaldollars# is
double-precision; firstname$ and lastname$ are string; and
spvariable! is single-precision.

You can define global variables anywhere in the source code. To give
the program more structure, define global variables at the beginning
of the source code where they serve as a quick reference list of all
global variables currently in use.

To define a variable as local to a procedure, type the variable or
list of variables after the label which defines the entry point into
the procedure. Use an equal sign{=) to separate the end of the label
name from the first character of the first local variable. To define
more than 1 variable, separate them with commas.

Use local variables only in the routine in which you define them. The
value you assign to a local variable does not affect the other
procedures in the program.

This example expands on the previous example to include 3 local
variables -- delayloopl%, delayloop2%, and kbdscan$ _,,

@start.program
1 *** Define Global Variables for TBA processing***
' No globals used
I

gosub @flash.message
@end.program

59

tJODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
----------- TANDY COMPUTER PRODUCTS -----------

stop
I

@flash.message=delayloopl%,delayloop2%,kbdscan$
' *** Define Local Variables with@label.name=variable.list ***

els
for delayloop1% = 1 to 20

kbdscan$ = inkey$
if kbdscan$ = chr$(13) then goto @end.flash.mssg

next delayloop1%
print @(1~.HJ),"Flashing Message - Press <ENTER> to continue"
for delayloop2% = 1 to 5~

kbdscan$ =inkey$
if kbdscan$ = chr$(13) then goto @end.flash.mssg

next delayloop2%
goto @flash.message

@end.f1ash.mssg
return

Global Versus Local Variables

Because TBA processes source into object code, it transforms global
variables throughout the program, and local variables throughout the
procedure in which you define them.

The first phase of processing replaces all local variables with
distinct 2-character variable names. The second phase replaces all
the global variables with distinct 2-character variable names.

The following example expands the @flash.message routine. It consists
of 2 procedures, which the main body of the program references.
testvar% is a global variable, and each of the 2 procedures contains
2 local variables:

I***
'Main Body of program
I***
=testvar%
1 *** Define and initialize Global Variables***

@beginning
tes tvar%=0
gosub @flash.messagel

if testvar%=1 then goto @ending.mssg
gosub @flash.message2

if testvar%=1 then goto @ending.mssg else goto @beginning

60

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
----------- TANDY COMPUTER PRODUCTS -----------

'***

'Procedure #1

'***
@flash.rnessagel=kbdscan$,loop%

'*** Define and initialize Local variables
kbdscan$="" : els
for loop%= 1 to 20

kbdscan$=inkey$
if kbdscan$=chr$(13) then goto @end.flashl
if kbdscan$= 11 X11 or kbdscan$= 11 x11 then testvar%=1:goto

@end. fl ash 1
next loop%
print @(1(},l(}), 11 Flashing-mssg-l, <enter> for 2, <x> to end"
for loop%=1 to 51}

kbdscan$=inkey$
if kbdscan$=chr$(13) then goto @end.flashl
if kbdscan$= 11 X11 or kbdscan$= 11 x11 then testvar%=1:goto

@end. fl ash 1
next loop%
goto @flash.messagel

@end. fl ash 1
return
I -lrlr*

1 Procedure #2

'**
@flash.message2=kbdscan$,loop%

'** Define and initialize Local variables***
kbdscan$= 11 " : els
for loop%=1 to 20

kbdscan$=inkey$
if kbdscan$=chr$(13) then goto @end.flash2
if kbdscan$= 11 X11 or kbdscan$= 11 x11 then testvar%=I:goto

@end. fl ash2
next loop%
print @(1(},l(}), 11 Flashing-mssg-2, <enter> for 1, <x> to end 11

for 1oop%=1 to 51}
kbdscan$=inkey$
if kbdscan$=chr$(13) then goto @end.flash2
if kbdscan$= 11 X11 or kbdscan$=11 x11 then testvar%=1:goto
next loop%
goto @f1ash.message2

61

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
----------- TANDY COMPUTER PRODUCTS -----------

@end.flash2@end.flash2:return
'The preceding line meets restrictions of the use of "RETURN"
I***
'End of program

I***
@ending.mssg

els
print @(10,10),"This proaram has been run in its entirety."
end

The main body of the program defines testvar% as the only global
variable and sets it equal to 0. The main body of the program calls
the first procedure, which causes Message 1 to flash on the screen.
Message 1 continues to flash on the screen until you press [ENTER]
or [X]. If you press [ENTER], the procedure returns without
changing testvar%. If you press [XJ, the procedure sets testvar% to
1 and returns to the main body of the program.

When the main body regains control of the program, it tests testvar%.
If testvar% equals 1, the program branches to the ending message
routine and stops execution. If testvar% equals 0, the program calls
the second procedure.

The second procedure displays another flashing message and waits for
you to press [ENTER] or [X]. On return to the main body of the
program, the program tests testvar%. If it contains a 1, control
branches to the ending message. If it contains any other value,
control branches to the beginning of the main body of the program.

Remember that when TBA processes source code, it removes lines that
begin with an apostrophe and does not insert a space between the line
number and the BASIC statement. We have included these for
readability in this sample of object code:

1 1 ***
2 'Main body of program
3 I

7 TE%=0
8 GOSUB 19
9 IF TE%=1 THEN GOTO 62
10 GOSUB 41
11 IF TE%=1 THEN GOTO 62 ELSE GOTO 7
12 1 ***
13 I

62

MODEL 4 TRSOOS 6.02.0(J UTILITIES PACKAGE
--------- TANDY COMPUTER PRODUCTS---------

14 1 Procedure #1
15 I

16 I***
19 KB$=" 11 : CLS
2(J FOR L0%=1 TO 2(J
21 KB$=INKEY$
22 IF KB$=CHR$(13) THEN GOTO 33
23 IF KB$= 11 X11 OR KB$= 11 x 11 THEN TE%=1:GOTO 33
24 NEXT LO%
25 PRINT @(l(J,10), 11 Flashing-mssg-l, <enter> for 2, <x> to
end 11

26 FOR L0%=1 TO 5(J
27 KB$=INKEY$
28 IF KB$=CHR$(13) THEN GOTO 33
29 IF KB$= 11 X11 OR KB$= 11 x11 THEN TE%=1:GOTO 33
3(J NEXT LO%
31 GOTO 19
33 RETURN
34 I***
35 I

36 1 Procedure #2
37 I

38 I***
41 KC$= 1111 : CLS
42 FOR LP%=1 TO 2(J
43 KC$=INKEY$
44 IF KC$=CHR$(13) THEN GOTO 54
45 IF KC$= 11 X" OR KC$=" x11 THEN TE%= 1: GOTO 54
46 NEXT LP%
47 PRINT @(10,l(J), 11 F1ashing-mssg-2, <enter> for 1, <x> to
end 11

48 FOR LP%=1 TO 5(J
49 KC$=INKEY$
5(J IF KC$=CHR$(13) THEN GOTO 54
51 IF KC$= 11 X11 OR KC$= 11 x 11 THEN TE%=1:GOTO 54
52 NEXT LP%
53 GOTO 41
54 RETURN
56 Irk*

57 I

58 'End of program
59 I

6(J I***
62 CLS

63

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
----------- TANDY COMPUTER PRODUCTS -----------

63 PRINT @(1Q,lQ), 11 This program has been run in its
entirety. 11

64 END

TBA translates labels and variables in the source code into line
numbers and 2-character variables in the eject code. This chart shows
the label translations:

Procedure label

@beginning
@fl ash .message 1
@end. fl ash 1
@flash.message2
@end. fl ash2
@ending .mssg

Line Number in Object

7
19
33
41
54
62

TBA assigns line numbers based on the location of the carriage
return, (X 1 ~D 1) in the file. All characters from the beginning of the
file until the carriage return comprise Line 1. All characters from
that point until the next carriage return comprise Line 2.

A procedure is the code that lies between the label that initiates
the procedure and the RETURN statement. Within a procedure, TBA
translates all occurrences of a defined local variable into a unique
variable name.

When TBA processes local variables in a given procedure, it starts
transforming variables at the beginning of the procedure and finishes
at the RETURN statement. For this reason, each procedure definition
contains only 1 RETURN statement; it appears as the last line of the
procedure; and it is the only BASIC statement on that line.

If you define the same local variable in more than 1 p~ocedure, TBA
translates the local variable into a different variable name in each
procedure. Once you define a variable as local to a procedure, you
cannot destroy its value even if you assign a new value to a
different variable with the same name in a different procedure.
TBA translates the local variables kbdscan$ and loop% in the
@flash.messagel routine into KB$ and LO% in the object.
@flash.message2 defines the same 2 local variables. In
@flash.message2, the variable kbdscan$ translates into KC$ and loop%
changes into LP%.

64

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
----------- TANOY COMPUTER PRODUCTS -----------

Using 1ocal variables eliminates the need to review already existing
variables every time you introduce a new variable. local variables
help you debug programs because the procedure determines the value of
the local variable. This prevents assigning a variable to some
obscure number before you enter the procedure.

When you reenter a procedure, you can reinitialize the local
variables in the procedure. Otherwise, the procedure maintains the
same values you assigned earlier to the local variables.

To perform a return from somewhere within a procedure, use a GOTO to
branch to a label at the end of the procedure. The RETURN statement
follows this label. You can have the label and the RETURN statement
on the same line, as in @end.flashl:RETURN. As the @flash.message
examples illustrate, you can choose the label name @end.procedure to
represent the branch to the RETURN statement.

After TBA processes al1 local variables, it transforms the global
variables into 2-character variable names. In this example, testvar%
is the only global variable defined. TBA globally replaces testvar%
with the variable TE%, no matter where it appears in the source
code--in the main body of the program or within the procedures.

To maintain a variable throughout the entire body of the main
program, define it as a global variable. In the flashing message
program, testvar% is a global variable that passes between the main
program and the procedures.

You can define the same variable name as both global and local. It
represents a different variable in the procedure than it represents
in the main program. Consider this source code which uses the
variable test% as a local and global variable:

' *** Define and initialize test% as a Global variable*.~*
=test%

test%=0
gosub @subl
print"this is the current value of test% -->";test%
end

@subl=test%
1 *** Define a Local test%, distinct from the Global test%***

for test%=1 to 10
print test%

next test%

65

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
----------- TANCV COMPUTER PRODUCTS -----------

return
Processing this source code produces this object code:

3 TF%=0
4 GOSUB 9
5 PRINT"this is the current value of test% -->";TF%
6 END
9 FOR TE%=1 TO 10
1~ PRINT TE%
11 NEXT TE%
12 RETURN

In the procedure @subl, TBA transforms the local variable test% into
the variable TE%, and the global variable test% into TF%. Different
variable names represent the local and global nature of the variable.

To have variables common to more than 1 procedure, define them as
global. The following example illustrates 1 procedure (@subl)
referencing another procedure (@sub2):

@start
gosub @subl
stop
I

@subl=var1%, loop%
for loop%=1 to 10

var1%=loop%

'call of @sub2 within @subl

gosub @sub2
print var1%

next loop%
return

'entry to @sub2
I

@sub2=var1%
1 *** Local var1% is distinct from @subl's Local var1% ***

var1%=var1%+{5*100)
return

66

MODEL 4 TR SOOS 6. 02. 00 UTILITIES PACKAGE
---------- TANCY COMPUTER PRODUCTS-----------

Both @subl and @sub2 define the variable var1% as local. Processing
this source code produces this object code:

2 GOSUB 6
3 STOP
6 FOR L0%=1 TO 1(}
7 VA%=LO%
11 GOSUB 2(}
12 PRINT VA%
13 NEXT LO%
14 RETURN
20 VB%=VB%+(5*1(}0}
21 RETURN

TBA translates the variable var1% in the @subl routine into VA%, and
var1% in the @sub2 routine into VB% in the object code. This prevents
the variable from passing between the 2 procedures. To remedy this
situation, define var1% as a global variable, not as a local
variable, in both procedures.

Use a similar procedure to define, dimension, and use arrays. To
define an array, place the array name in a variable definition
statement. Follow the array name with a type declaration tag, as
though you were defining a simple variable. Place the array name
alone in the definition statement. Using parentheses or a subscript
value causes an error during processing. This example demonstrates
how to define, dimension, and use the array totals#. All other
variables in the definition statement represent simple global
variables:

=totals#,1oop1%, loop2%,dimrow%,dimcolumn%
dimrow%=5(}
dimcolumn%=2(}
dim totals#(dimrow%,dimcolumn%)
for loopl%= 1 to dimrow%

for loop2%=1 to dimcolumn%
totals#(loopl%, loop2%)=0

next loop2%
next 1oopl%

Processing this source code produces this object code:

67

MJDEL 4 TRSDOS 6.02.0~ UTILITIES PACKAGE
----------- TANDY CDMPUTEPI PPIDDUCTS -----------

2 DI%=5(1
3 DJ%=2~
4 DIM TP#(DI%,DJ%)
5 FOR LO%= 1 TO DI%
6 FOR LP%=1 TO DJ%
7 TP#(LO%,LP%)=0
8 NEXT LP%
9 NEXT LO%

References to the array totals# in the source code translate to TP#
in the object code. Since you can use defined variables with any
BASIC function, you can use them as subscripts. In this example, the
variables dimrow% and dimcolum% are subscripts.

Always define variables. Processing variable names without type
declaration tags causes a syntax error. TBA does not process a
variable that is not defined. It issues an "Undefined Variable" error
message.

Miscellaneous Differences and Information

In TBA, you can use the REM statement to comment your source and
object code. If a REM statement is the first text on a line, TBA
passes the line unchanged to the object code. If REM appears later in
a line, TBA does not recognize it properly and can generate an error.
To pass a remark statement to the object code, use REM at the
beginning of a line.

If a line begins with an apostrophe (1), TBA deletes the entire line.
· If there is an apostrophe in the middle of a line, TBA deletes the
remaining text on that line. To use a remark in source code only, use
an (').

To improve readability, use tabs throughout the source-code. TBA
removes leading tabs and extra spaces in the object code. This
enables you to include spaces in the source code without using up
extra memory in the object code.

In addition to this feature, the FC (Full Compression) parameter
removes spaces within a BASIC line. Since FC removes spaces around
reserved words, Model 4 ~ASIC cannot use this parameter. Model III
BASIC and LBASIC can use the TBA object co_de that includes the FC
parameter. To avoid forming the reserved word ASC and producing a

68

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
----------- TANCV COMPUTER PRODUCTS -----------

syntax error, FC does not delete the space between AS and a variable
beginning with C.

When you define a label, you can type additional BASIC statements on
the same line as the label definition. Do not define any local
variables with the label. Do not embed a label definition starting a
branch within a line. Use it as the first statement on the line. To
include BASIC statements on a labeled line, follow the label with a
colon (:). This example demonstrates writing a source line that
contains BASIC statements following label:

@DELAY.LOOP : FOR J = 1 TO 200~ : NEXT J

TBA does not process the variable J because it is too short and lacks
a type declatation tag. It passes this statement into object code
unmodified, without harminq the execution or readability of the line.
This is not recommended practice.

WRITING SOURCE CODE

You can create ASCII source code with a word processor such as
SCRIPSIT; a text editor such as ALEDIT; or Interpreter BACIC. Assign
the the source files a common file extension when you save them to
disk. Since you use both source and object files, differentiate
between the 2 with a common extension. For example, use /TBA for The
BASIC Answer. Then, you can execute the object file only.

Using a Word Processor/Text Editor to Write Source Code

Whatever editor or processor you choose has advantages .and
disadvantages. The text must be pure ASCII.

Do not insert characters or lines that serve a specific function in
the word processor or text editor into the source code. Page
formatting lines, block markers or any other control characters
cannot appear in the source code. You can use these characters when
you write source code, to move blocks of code around, or make source
listings more readable. If you use these special characters, delete
them from the source code before you process it.

69

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
----------- TANDY COMPUTER PRODUCTS -----------

Unless you indicate otherwise, certain word processors save some
characters in the text as non-ASCII characters. For example, SCRIPSIT
saves a carriage return (X'@D') as a non-ASCII character (X'80').
Characters with a value less than X'20' (except a tab, carriage
return, or linefeed character) cannot appear in the text. For more
information on saving a file in ASCII, consult the documentation for
the word processor or text editor you use.

A carriage return character ends all lines in the program text and is
the last character in the text. Some word processors have extraneous
spaces at the end of the last carriage return. Prior to saving a
program text file, perform a delete to the end of text after the
last carriage return in the program.

Using the BASIC Interpreter to Write Source Code

There are disadvantages to writing source code with the BASIC
Interpreter. You cannot transport or relocate it within the program
and BASIC converts lower to upper case outside of quotation marks or
remarks. If you do write source code with BASIC, you must adhere to
several guidelines.

BASIC interprets any keyboard entries you make in answer to the READY
prompt, and acts on them immediately unless you precede them with a
line number. BASIC uses the line numbers to store the program text in
memory. No line number references may appear in source code. Although
you cannot use internal line numbers in the source code, you have to
use line numbers to enter the source code in BASIC.

This is an example of source code written in BASIC:

1~ @START.PROGRAM
20 ' *** Define Variables for TBA processing***
3(} =LOOP%,IN$
40 I

5(} G05UB @FLASH.MESSAGE
6(}
7(} @END.PROGRAM
8~ STOP
9(} I

1(}0 I

110 @FLASH.MESSAGE
120 CLS
130 FOR LOOP%= 1 TO 2~
140 IN$=INKEY$

70

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
---------- TANDY COMPUTER PRODUCTS-----------

150 IF IN$=CHR$(13) THEN GOTO @END.FLASH.MSSG
160 NEXT LOOP%
170 PRINT@(10, W), "Fl ashing Message - Press <ENTER> to con ti nue 11

180 FOR LOOP%= 1 TO 50
190 IN$=INKEY$
200 IF IN$=CHR$(13) THEN GOTO @END.FLASH.MSSG
210 NEXT LOOP%
220 GOTO @FLASH.MESSAGE
230 @END.FLASH.MSSG
240 RETURN

When TBA processes the source code, it removes line numbers at the
beginning of a line without affecting source code.

After you write the source code, include the A parameter in the SAVE
command. If you omit the A parameter, BASIC saves keywords in
compressed form and the file contains non-ASCII characters. This
produces unpredictable results when you process the file. To save a
file in ASCII, use the following syntax:

SAVE"filename",A

Source code lines may contain a maximum of 240 characters, including
the line number. TBA truncates lines that exceed this limit.

Although source code does not reference line numbers, the sequence of
the line numbers is important. As you write program lines, BASIC
inserts them into the program in sequence by line number. Therefore,
choose line numbers that result in the proper sequencing of lines, as
you do when writing BASIC programs.

Using DIRECTIVES in Source Code

Using a directive, you can alter the output of an object file, and
can conditionally process source files. The directives are:

*PR LINES (use in source code only)
*LI ST ON /OFF (use in source code only)
*PAGE (use in source code only)
*TITLE (use in source code only)
*IF expression (use in source code only)
*END (use in source code only)

71

MODEL 4 TRSOOS 6.02.00 UTILITIES PACKAGE
---------- TANDY CDMPUTER PRDDUCTS ----------

*expression (use in source code or at
directive prompt)

You can include all of the directives in source code. But the only
directive you can include at the directives prompt is expression.

To specify a directive in the source code, the asterisk (*) must be
the first character on the line. The directive is the only statement
on the line.

*PRUNES [=!!_]

Specifies the number of lines to print per page.

!!. specifies the number of lines to print per page and may be in the
range 20 to 254. If you omit !!., TBA assumes 56.

When the printer prints the specified number of lines, *PRLINES sends
an X'0C' character to the printer, which produces a top-of-form
position.

Do initial top-of-form alignment before you process. To do this, make
sure the printer is on line and the TRSDOS printer filter FORMS/FLT
is in memory. Type a top-of-form command:TOF [ENTER] at TRSDOS
Ready. You typically use PAGE=66,LINES=66 as forms control
parameters. After the paper moves, position it so that the initial
print occurs where you want it to. A top of form command positions
the paper at the same relative line on subsequent pages.

If the printer prints 00 characters per line, set the CHARS parameter
with FORMS/FLT at 80 to paginate correctly. You can set other print
filter parameters, but any INDENT disrupts the formatted output.

To activate the printer filter, at TRSDOS Ready, type:

SET *FF TO FORMS/FLT [ENTER]
FORMS {PAGE=66,LINES=66) [ENTER]

Optionally, also type:

FORMS (CHARS=80) [ENTER]

72

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
----------- TANDY COMPUTER PRODUCTS -----------

*LIST [ON/OFF]

Toggles the listing of the object code.

If you omit ON and OFF, TBA assumes ON.

Assume that you want to list only the main body of the program and
the ending message. The following *LIST directives added to the
source code enable you to do so. For clarity, the directives are in
upper case.

'***
'Main Body of program
I***
=testvar%
'*** Define and initialize Global Variables***

@beginning
testvar%=0
gosub @flash.messagel

if testvar%=1 then goto @ending.mssg
gosub @flash.message2

if testvar%=1 then goto @ending.mssg else goto @beginning
'***

'Procedure #1

'***
*LIST OFF
@flash.messagel=kbdscan$,loop%

'*** Define and initialize local variables
kbdscan$= 1111 : els
for 1oop%=1 to 2(J

kbdscan$=inkey$
if kbdscan$=chr$(13) then goto @end.flashl
if kbdscan$= 11 X11 then kbdscan$= 11 x11

if kbdscan$="x 11 then testvar%=1:goto @end.flasb1
next loop%
print @(l(J,l(J), 11 Flashing-mssg-l, <enter> for 2, <x> to end"
for loop%=1 to 5(J

kbdsc an$= i nkey$
if kbdscan$=chr$(13) then goto @end.flashl
if kbdscan$="X 11 then kbdscan$=11 x11

if kbdscan$=11 x11 then testvar%=1:goto @end.flashl
next loop%
goto @flash.messagel

@end. fl ash1

73

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
----------- TANDY COMPUTER PRODUCTS -----------

return
I***

'Procedure #2

'***
@flash.message2=kbdscan$,loop%

'*** Define and initialize Local variables***
kbdscan$= 1111 : els
for loop%=1 to 2(}

kbdscan$==inkey$
if kbdscan$=chr$(13) then goto @end.flash2
if kbdscan$=11 X" then kbdscan$="x"
if kbdscan$="x" then testvar%=1:goto @end.flash2

next loop%
print @(l(},1(}),"Flashing-mssg-2, <enter> for 1, <x> to end"
for loop%=1 to 5(}

kbdscan$=inkey$
if kbdscan$=chr$(13) then goto @end.flash2
if kbdscan$== 11 X11 then kbdscan$= 11 x11

if kbdscan$= 11 x" then testvar%=1:goto @end.flash2
next loop%
goto @flash.message2

@end.flash2:return
1 The preceding line DOES meet restrictions on the use of "RETURN"
·***
1 End of program

'***
*LIST ON
@ending.mssg

els
print @(1(},1(.J),"This program has been run in its entirety."
end

TBA lists:

====>>

1 Main Body of program
=====>>

'***

74

MODEL 4 TRSDOS 6.02.0~ UTILITIES PACKAGE
---------- TANDY COMPUTER PRODUCTS----------

====>>

=testvar%
====>>

1 *** Define and initialise Global Variables***
====>>

@beginning
====>>

testvar%=0
====» i TE%=0

gosub @flash.messagel
====» 8GOSUB 2/J

if testvar%=1 then goto @ending.mssg
====>> 9IF TE%=1 THEN GOTO 68

gosub @flash.message2
====>> l(JGOSUB 44

if testvar%=1 then goto @ending.mssg else goto
@beginning
====>> llIF TE%=1 THEN GOTO 68 ELSE GOTO 7

'***
====>>

====>>

'Procedure #1
====>>

====>>

I***
====>>

*LIST OFF
====>>

75

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
----------- TANDY COMPUTER PRODUCTS -----------

@ending.mssg
====>>

els
====» 68 CLS

print @(l~,1i), 11 This program has been run in its
entirety. 11

====» 69PRINT @(10,lf}), 11 This program has been run in its
entirety."

.. end
====» 70END

The listing continues with the cross reference table. In this
example, the *LIST directive allows you to control the exact parts of
the program that list during processing. *LIST does not affect the
output to the object file. TBA writes the entire program to disk.
*LIST affects only listings directed to the printer or screen.

You do not have to specify *LIST ON at the beginning of the source
file. The file generates a listing until it encounters the first
*LIST OFF command. Also, the *LIST OFF directive appears in the
listing, but the *LIST ON does not.

*PAGE

Sends a top of form character (X 1 0C 1) to the printer when listing an
object file.

*PAGE directive does not affect listings sent to the screen. To
direct the list output to the printer, include the LP parameter and
activate the printer filter FORMS/FLT.

_,.,,.,·

Using the flashing message program as the source code, the *PAGE
directive lists the main body of the program and each individual
procedure on a separate page:

'***
'Main Body of program
I***
=test var%
'*** Define and initialise Global Variables***

@beginning

76

MODEL 4 TRSOOS 6.02.00 UTILITIES PACKAGE
----------- TANDY COMPUTER PRODUCTS -----------

tes tv ar%=0
gosub @flash.messagel

if testvar%=1 then goto @ending.mssg
gosub @flash.message2

if testvar%=1 then goto @ending.mssg else goto @beginning
*PAGE

'***

'Procedure #1

I *1<*
@flash.messagel=kbdscan$,loop%

'*** Define and initialise Local variables
kbdscan$= 1111 : els
for loop%=1 to 2~

kbdscan$=inkey$
if kbdscan$=chr$(13) then goto @end.flash!
if kbdscan$= 11 X11 then kbdscan$= 11 x11

if kbdscan $= 11 x11 then testvar%=1: goto @end. fl ash 1
next loop%
print @(1~,l~), 11 Flashing-mssg-l, <enter> for 2, <x> to end 11

for loop%=1 to SQ
kbdscan$=inkey$
if kbdscan$=chr$(13) then goto @end.flashl
if kbdscan$= 11 X11 then kbdscan$= 11 x11

if kbdscan$= 11 x 11 then testvar%=1:goto @end.flashl
next 1 cop%
goto @flash.messagel

@end. fl ash 1
return

*PAGE
'***
'Procedure #2

I *1<*

@flash.message2=kbdscan$,loop%
'*** Define and initialize Local variables***
kbdscan$= 1111 : els
for loop%=1 to 2~

kbdscan$=inkey$
if kbdscan$=chr$(13) then goto @end.flash2
if kbdscan$= 11 X11 then kbdscan$= 11 x11

if kbdscan$= 11 x11 then testvar%=1:goto @end.flash2
next loop%

77

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
----------- TANDY CCMPUTER PRCCUCTS -----------

print @(10,1~),"Flashing-mssg-2, <enter> for 1, <x> to end"
for loop%=1 to 5(}

kbdsc an$= in key$
if kbdscan$=chr$(13) then goto @end.flash2
if kbdscan$= 11 X11 then kbdscan$="x"
if kbdscan$="x" then testvar%=1:goto @end.flash2

next loop%
goto @flash.message2

@end.flash2:return
'The preceding line DOES meet restrictions on the use of "RETURN"

*PAGE
''f<r**

'End of program

@ending.mssg
els
print @(10,1(}),"This program has been run in its entirety."
end

The normal printed output is usually 1 continuous block of printed
text. Because we included the *PAGE directive, it takes 4 physical
pages to contain the printed listing of this file. Page 1 contains
the main body of the program. Page 2 contains the first procedure:
@flash.messagel. Page 3 contains the second procedure:
@flash.message2. Page 4 contains the ending message routine.

*TITLE "string"

Prints a title at the top of each page.

string may contain 14 characters and you must precede it with a
quote. fhe closing quote is ootional. If you omit string, TBA
displays an error message.

*TITLE prints the contents of string at the top of each page. It
can appear anywhere in the source code. TBA titles all pages of the
listing. For example, if you include *TITLE at the end of the source
program, TBA prints the title at the top of the first page. You
cannot turn *TITLE on and off.

78

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
----------- TANDY COMPUTER PRODUCTS -----------

The directive:

*TITLE "Flash Message"

prints:

BASIC Answer Flash Message June 24, 1982 12:03 A.M. Page 1

TBA prints 2 blank lines after the title. Use LP and *TITLE to
document the history of a program's development.

*IF expression/ *ENO

*IF expression, *ENO, and *expression allow conditional
processing of source code.

They allow you to produce multiple object files that use almost the
same code.

This BASIC line using the conditional IF/THEN statement illustrates
how the *IF/ *END directives operate:

IF A% THEN PRINT "Condition true" : PRINT "A not equal zero"
This line tests the condition: Is the variable A% non-zero? If the
condition is true, BASIC executes the 2 PRINT statements following
the THEN. If the condition is false, it ignores the 2 PRINT
statements following THEN.

With *IF/ *END directives, you apply the same type of conditional
testing to processing source code. You can use conditional blocks
that begin with the *IF directive and end with the *END directive.
All code between the *IF and *END directives belongs to that
conditional block.

If the program encounters an *IF directive during processing, it
precedes with a conditional test. If the condition is true, the
program processes all code in that conditional block. If the
condition is false, TBA ignores all code up to the *END directive.

An expression of up to 14 alphanumeric characters follows the *IF and
tests the conditions. expression must begin with a letter. The
remaining characters can include letters, numbers, the period (.),
and underline () characters.

79

t'ODEL 4 TRSDOS 6.02.011 UTILITIES PACKAGE
----------- TANDY CDMPUTER PRDDUCTS -----------

This example includes *IF/ *END directives:

=total.items%,index.array%,item.drive$,item.file$
I

*IF hard.drive
total. items%=4\1\1\1 : item.drive$ = 11 :3 11

*END

*IF floppy.drive
total. items%=5\1\1 item.drive$ = 11 :1 11

*END

dim index.array%(total.items%)
item.file$= 11 ITEMFILE/OAT 11 + item.drive$

This example defines the global variables total.items% and the array
index.array%. Two conditional blocks follow the definition statement.
The first conditional block tests whether the condition hard.drive is
true. If it is true, TBA processes all code between the *IF and the
*END, and stores the processed code in the object file. If the
condition is false, TBA ignores all code between the *IF and the *ENO
and eoes not include it in the object file.

The second conditional block tests whether the condition floppy.drive
is true. If it is true, TBA processes the code between the *IF and
*END and writes it to the object file. If it is false, TBA ignores
the code between the *IF and *ENO and does not write it to the object
file.

This source code can be a part of a larger program that manages data
stored on a drive. If you store the data on a hard drive and you set
the proper condition, the object code allows you to in!,tialize the
variable total.item% to 41,11,11,1. The program dimensions the array
index.array% and sets appropriate drive numbers for a particular
file. If you store the data on a floppy disk, the object code allows
you to initialize the variable to 500 and the program dimensions the
array accordingly. The program allows 41100 data items if it runs on a
hard drive and 51,11,1 if it runs on a floppy disk.

Omitting expressions can cause unpredictable results. If you omit
hard.drive and floppy.drfve this program omits both conditional
blocks. TBA processes the other statements into object code. Because

81,1

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
----------- TANCV COMPUTER PRCCUCTS -----------

total.item% is not initialized by the conditional blocks, TBA
dimensions index.array% contiaining only 1 element, index.array%(0).
Attempting to access any other element results in a "Subscript out of
range" error message.

Now that you understand how conditional blocks function, you need to
know how to set a condition as either true or false. To establish
conditional values, use the *expression directive.

*expression

The *expression directive establishes a condition of being true or
false. You can include it in the source code or at the Directives?
prompt. Use this directive with the *IF/ *END directives to dictate
the outcome of an *IF conditional block.

Use the same expression as the 1 specified in the *IF directive. If
you include *expression, the corresponding *IF conditional is true,
and the program processes all code in the conditional block. If you
omit *expression, the corresponding *IF conditional is false, and
the program omits the code in the conditional block.

In the previous example, change the second line from a remark to a
directive, as follows:

=total.items%,index.array%,item.drive$,item.file$
*floppy.drive
*IF hard.drive
total. items%=4~00 : item.drive$ = 11 :3 11

*ENO

*IF floppy.drive
total.items%=5~~
*END

item.drive$= 11 :l"

dim index.array%(total.items%)
item.file$= "ITEMFILE/DAT" + item.drive$
Since you include *floppy.drive, any time the conditional *IF
floppy.drive occurs, it is true, and the program processes the code
in the conditional block.

81

fv'ODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
----------- TANDY CCJMPUTER PRCJCJUCTS -----------

Since you omit *hard.drive, any time the conditional *IF hard.drive
occurs, it is false, and the program does not process any of the code
in the conditional block. If you process this source code, it
produces the object code for the floppy drive version of the program.

In general, to perform conditional processing of the source code with
directives, follow these steps:

1. Establish the conditional block within the program, by
using the *IF and *END directives.

2. To process the code in the conditional block, specify the
*expression in the source code. The expression is the
same as the one you use in the *IF block.

3. To omit the conditional block, omit the *expression that
you use in the *IF directive.

You can include *expression during processing. To do this, respond
to the directives prompt by entering the *expression. This enables
you to define the conditional ·processing you want at processing time,
instead of embedding the conditions within the source code.

For example, to set the *hard.drive conditional as true in the
previous example, answer the Directives? prompt by typing:

Directives? hard.drive [ENTER]

To enter more than 1 expression, separate them with commas. The
program evaluates an *IF conditional it finds in the source code that
contains the expression *hard.drive as true. After you enter the
expression, TBA redisplays the prompt. Press [ENTER] or include
more expressions. TBA assumes you want to include additional
expressions until you press [ENTER] as the first key in respose to
the directives prompt.

As with variables and labels, TBA ignores upper and lower case when
differentiating expressions. An expression *HARD.DRIVE exactly
matches *hard.drive because the only difference is the case of the
letters. If you include the DC parameter, expression must match the
corresponding expression in the *IF conditional exactly, including
the case of the letters.

82

MODEL 4 TRSDOS 6.02.0~ UTILITIES PACKAGE
----------- TANDY COMPUTER PRODUCTS -----------

This example shows how to include more than 1 expression in a single
line. The spaces following the commas are optional:

During Processing:
Directives : single.den,floppy.drive,forty.track,modell

Within the Source:
*single.den,floppy.drive,forty.track,modell

Both of these lines define the 4 conditionals as true.

When you specify *IF, *END, and *expression directives within the
source code, place each on separate lines.

The *expression directive appears in the source code before the
corresponding *IF conditional. If the *IF conditional physically
precedes the *expression, the program evaluates it as false. Place
all *expressions you use in the source code in the beginning of the
source text. This ensures that you set all conditionals, and it
groups the conditionals together at the beginning of the text. With
this method, you do not have to search for any unwanted conditionals
that you set when you processed the file in the past.

If the program encounters an *END directive without a corresponding
*IF, it treats it as if there were no conditional.

If you specify an *IF without a corresponding *END, the program
interprets all code from the *IF statement to the end of the source
file as a part of the conditional, and processes it accordingly.

You can have as many *IF/ *END conditional blocks within the source
code as you want. You cannot nest conditional blocks.

If TBA encounters 2 *IF directives without an *END between them, the
screen displays the following error message:

Nested IF Encountered

TBA stops processing this file and returns to TRSDOS Ready.

83

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
----------- TANDY COMPUTER PRODUCTS -----------

USING TBA

After you write source code, TBA processes it into object code to run
as a BASIC program. No matter how you create source code, obtain a
numbered source listing before you process it. To do this, at the
TRSDOS Ready prompt type:

LIST filespec/ext:d (N,P)

to print a numbered listing. TBA references the numbers on the left
of the listing as line numbers and as the reference point for
processing errors.

If you intend to print output, establish top-of-form on the printer
before preceding.

Processing Source Code

To return to the TRSDOS Ready prompt, press [BREAK] as a response
to a prompt.

To use TBA, at the TRSDOS Ready prompt type:

TBA [ENTER]

TBA displays a paragraph of copyright information and the prompt:

Source Filespec ?

Enter the filespec you want TBA to process. If the filespec has an
extension, include it. If you omit the extension, TBA assumes /TBA.

84

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
----------- TANDY COMPUTER PRODUCTS -----------

TBA displays the next prompt:

Object Filespec ?

Type any legal filespec or press [ENTER]. If you press [ENTER],
TBA assumes source filespec/BAS.

NOTE: At the same time that it processes the source file, TBA
writes object code to the diskette under the fi1espec you specify as
the object file. TBA writes to the object file no matter how you
answer the prompt. Choose an object filespec to prevent TBA from
overwriting anything you want preserved.

The next prompt is:

Processing Parms?

Press [ENTER] to omit parameters or include 1 or more of
the parameters. If you omit parameters, TBA displays processing
information on the screen. If you include more than 1 parameter,
separate them with commas. ,

The parameters are:

LP prints object code and the cross reference table on the printer.

TO displays only the object code.

NL indicates no listing. TBA does not print processing information
on the screen or line printer.

NX omits the cross reference table.

FC eliminates as many spaces as possible from the object file.

DC causes all variables, labels and directives to appea~ in the
object code exactly as they do in the source without conversion
from lower case to upper case.

You can use only 1 output device to display the object code. If you
include the LP parameter, TBA does not display processing information
on the screen. If you include NL and TO parameters, TBA displays the
cross-reference table and omits the source listing. If you use NL and
NX, no video or printed output occurs.

85

ft'ODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
----------- TANDY COMPUTER PRODUCTS -----------

NOTE: The FC parameter creates an object code that is incompatible
with Model 4 BASIC.

You can include any combination of parameters. If you include more
than 1, separate them by commas. These examples demonstrate the
results of some combinations. ·

To send output from the object file to the printer, create a disk
file which contains the object program, and generate a
cross-reference table of variables and labels, answer the prompt by
typing:

LP [ENTER]

TBA sends a listing to the printer, not to the screen, and
generates a cross-reference table.

Nl,NX [ENTER]

TBA omits the listings and writes the object to disk.

LP,NL,NX [ENTER]

TBA omits the listing even though you include the LP parameter
because NL takes precedence.

[ENTER]

displays the object code and a cross-reference table on the screen.

The FC output option causes TBA to remove as many spaces as possible
from the object code. If you omit the FC parameter, TBA leaves all
single spaces from the source file intact. It reduces all groups of
spaces to a single space. For example, the consider the source line:

if Credit.Limit#< Current.Bal# then

If you omit FC, TBA produces:

IF CR#< CU# THEN GOSUB 128

gosub
.,/"

@Get.Hostages

TBA leaves the spaces between each keyword, but removes the extra
spaces between THEN and GOSUB and GOSUB and the label. If you include

86

MODEL 4 TRSOOS 6.02.00 UTILITIES PACKAGE
----------- TANDY COMPUTER PRCCUCTB -----------

FC, the same source line becomes :

IFCR#<CU#THENGOSUB128

FC removes all spaces except those in REM lines, between quotation
marks, and after the keyword AS if the following variable begins with
C. Once FC removes the spaces, the object code no longer runs under
Model 4 BASIC, which requires spaces around reserved words.
The DC option prevents TBA from converting lower case characters to
upper case characters in variables, labels, and directives. This
distinguishes a variable called LOOP1% from loop1% or L0op1%. The
label @INPUT is different from @input, @Input, or @InpuT.

Omit the DC option unless you write the source code to accommodate
it.

The last prompt is:

Directives ?

Press [ENTER] to omit expressions, or include 1 or more expressions
that the program uses in an *IF conditional. If you include more than
1 expression, separate them by commas.

If the directives exceed the width of the input line, type as many as
possible and press [ENTER]. TBA redisplays the prompt for you to
include more express ions. This prompt repeats until you press the
[ENTER] key as the first key of the line.

After you answer the prompts, TBA loads the source file into memory
and displays the message Pass 1. TBA processes the source file.

During the processing, TBA checks to see that you write valid source
code, which is is not necessarily working BASIC code. If TBA does not
detect an error, the processing phase continues and creates object
code. As each pass begins, TBA displays Pass! on the screen.

If TBA detects a hardware error during processing, (for example, Disk
I/0 Error, Parity Error), it returns to the TRSDOS Ready prompt.

If TBA detects an error in the source code, it suspends processing
and displays the appro~riate error message. To end processing and
return to the TRSDOS Ready prompt, press [BREAK]. To see if there
are additional source code errors, press [SPACEBAR].

87

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
----------- TANDY COMPUTER PRODUCTS -----------

After TBA processes the entire source code, it returns to the TRSOOS
Ready prompt.

Error Messages

When TBA encounters errors in the source code, it displays these
error messages:

Illegal Procedure Label

A label name does not conform to valid label names.

Multiply Defined Label

You defined the same label more than once in the source code.

Illegal Variable

A variable does not conform to the variable name rules.

Variable Definition Format Error

You omitted the= or commas in a defintion statement.

Local Procedure Used without a RETURN

You omitted a RETURN statement as the last statement of a procedure.

Undefined Procedure Label

A GOTO, GOSUB or RESUME references an undefined label.

Multiply Defined Global Variable

You defined a variable as global more than once.

88

MODEL 4 TRSDOS 6.02.0~ UTILITIES PACKAGE
----------- TANDY COMPUTER PRODUCTS -----------

Undefined Variable

TBA encountered an undefined variable.

Illegal Title Format

A *TITLE directive does not conform to the rules for a correct title.
Illegal Directive Format

You used a d1rective expression that does not conform to the rules
for directives.

If TBA encounters these errors, it returns to TRSDOS Ready:

Insufficient Memory to Load Text

There is not enough memory available to process the source file.

Symbol Table Overflow

You used too many variables or too many references to those
variables.

Source Line too Long

A line in the file exceeds the 24~ character limit.

Variable usage Overflow

You used more than 93~ variables of a certain type declaration tag.

These errors occur during the input prompts. TBA repeats the prompt.

89

tlOOEL 4 TRSOOS 6.02.0~ UTILITIES PACKAGE
----------- TANDY COMPUTER PRODUCTS -----------

Illegal Filespec

Either the source or object filespec is not a proper file
specification.

Bad *expression format

You responded to the directives prompt with an illegal input format,
which cancelled the current input line.

Bad Parameter (s)

You answered the Processing Options prompt incorrectly.

Identical Source and Object Filespecs

The object file has the same name as the source file.

If possible, these error messages display the number of the line in
which the-error exists.

Sample Screen and Video Output

Assume the source file TBA is processing is:

'***
1 Main Body of program

=testvar%
1 *** Define and initialize Global Variables***

@beginning
testvar%=0
gosub @flash.messagel _,.,/

if testvar%=1 then goto @ending.mssg
gosub @flash.message2

if testvar%=1 then goto @ending.mssg else goto @beginning

'Procedure #1

'***

9(6

MODEL 4 TRSDOS 6.02.0~ UTILITIES PACKAGE
----------- TANDY COMPUTER PRODUCTS -----------

@flash.messagel=kbdscan$,loop%
'*** Define and initialize Local variables
kbdscan$="" : els
for loop%=1 to 2~

kbdscan$=inkey$
if kbdscan$=chr$(13) then goto @end.flashl
if kbdscan$="X" then kbdscan$="x"
if kbdscan$= 11 x11 then testvar%=1:goto @end.flashl

next loop%
print @(1(},l(}), 11 Flashing-mssg-l, <enter> for 2, <x> to end"
for 1oop%=1 to 5(}

kbdscan$=inkey$
if kbdscan$=chr$(13) then goto @end.flashl
if kbdscan$= 11 X11 then kbdscan$= 11 x"
if kbdscan$="x 11 then testvar%=1:goto @end.flashl

next loop%
goto @flash.messagel

@end. fl ash 1
return
•tt*

'Procedure #2

I***
@flash.message2=kbdscan$,loop%

'*** Define and initialize Local variables***
kbdscan$=" 11 : els
for loop%=1 to 2(}

kbdscan$=inkey$
if kbdscan$=chr$(13) then goto @end.flash2
if kbdscan$= 11 X11 then kbdscan$= 11 x 11

if kbdscan$= 11 x11 then testvar%=1:goto @end.flash2
next loop%
print @(l(},l(}), 11 Flashing-mssg-2, <enter> for 1, <x> to end"
for loop%=1 to 50

kbdscan$=inkey$
if kbdscan$=chr${13) then goto @end.flash2
if kbdscan$="X 11 then kbdscan$= 11 x11

if kbdscan$= 11 x 11 then testvar%=1:goto @end.flash2
next loop%
goto @fl ash .message2

91

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
----------- TANDY COMPUTER PRODUCTS -----------

@end.flash2:return
'The preceding line DOES meet restrictions on the use of 11 RETURN 11

I 'lrlr:*

'End of program

@ending.mssg
els
print @(l~,lP), 11 This program has been run in its entirety. 11

end

If you include the LP parameter, TBA generates the following output to
the printer:

'tt*
====>>

'Main Body of program
====>>

====>>

=testvar%
====>>

'*** Define and initialize Global Variables***
====>>

@beginning
====>>

tes tv ar%=0
====» 7 TE%=0

gosub @flash.messagel
====>> 8GOSUB 19

if testvar%=1 then goto @ending.mssg
====>> 9IF TE%=1 THEN GOTO 66

gosub @flash.message2
====>> 10GOSUB 43

92

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
---------- TANDY COMPUTER PRODUCTS----------

if testvar%=1 then goto @ending.mssg else goto @beginning
====>> llIF TE%=1 THEN GOTO 66 ELSE GOTO 7

'***
====>>

====>>

'Procedure #1
====>>

====>>

'**
====>>

@flash.messagel=kbdscan$,loop%
====>>

'*** Define and initialize Local variables
====>>

kbdscan$="" : els
====>> 19 KB$="" : CLS

for loop%=1 to 20
====>> 20FOR L0%=1 TO 20

kbdscan$=inkey$
====>> 21KB$=INKEY$

if kbdscan$=chr$(13) then goto @end.flashl
====>> 22IF KB$=CHR$(13) THEN GOTO 35

if kbdscan$="X" then kbdscan$="x"
====» 23IF KB$= 11 X11 THEN KB$= 11 x 11

if kbdscan$=11 x11 then testvar%=1:goto @end.flashl
====» 24IF KB$= 11 x" THEN TE%=1:GOTO 35

next loop%
====>> 25NEXT LO%

93

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
---------- TANCY COMPUTER PRODUCTS----------

print @(10,10),"Flashing-mssg-l, <enter> for 2, <x> to end"
====» 26PRINT @(10,10), 11 Flashing-mssg-l, <enter> for 2, <x> to end"

for loop%=1 to 50
====>> 27FOR L0%=1 TO 50

kbdscan$=inkey$
====>> 28KB$=INKEY$

if kbdscan$=chr$(13) then goto @end.flashl
====>> 29IF KB$=CHR$(13) THEN GOTO 35

if kbdscan$=11 X11 then kbdscan$= 11 x11

====» 30IF KB$= 11 X11 THEN KB$= 11 x11

if kbdscan$= 11 x11 then testvar%=1:goto @end.flashl
====» 31IF KB$= 11 x11 THEN TE%=1:GOTO 35

next loop%
====>> 32NEXT LO%

goto @flash.messagel
====» 33GOTO 19

@end. fl ash 1
====>>

return
====» 35 RETURN

'**
====>>

====>>

'Procedure #2
====>>

====>>

'**
====>>

94

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
---------- TANDY COMPUTER PRODUCTS----------

@f1ash.rnessage2=kbdscan$,loop%
====>>

'*** Define and initialize Local variables ***
====>>

kbdscan$="" : els
====>> 43 KC$="" : CLS

for loop%=1 to 2~
====>> 44FOR LP%=1 TO 2~

kbdscan$=inkey$
====>> 45KC$=INKEY$

if kbdscan$=chr$(13) then goto @end.flash2
====>> 461F KC$=CHR$(13) THEN GOTO 58

if kbdscan$="X" then kbdscan$="x"
==== » 47 IF KC $= 11 XII THEN KC $= 11 X"

if kbdscan$="x" then testvar%=1:goto @end.flash2
====» 48IF KC$=" x" THEN TE%=1 :GOTO 58

next loop%
====>> 49NEXT LP%
print @(lg,1~),"Flashing-mssg-2, <enter> for 1, <x> to end"
====>> 5iPRINT @(li,l~),"Flashing-mssg-2, <enter> for 1, <x> to end"

for loop%=1 to 5~
====>> 51FOR LP%=1 TO sg

kbdscan$=inkey$
====>> 52KC$=INKEY$

if kbdscan$=chr$(13) then goto @end.flash2
====» 53IF KC$=CHR$(13) THEN GOTO 58

if kbdscan$= 11 X" then kbdscan$= 11 x11

====» 541F KC$="X" THEN KC$="x"

if kbdscan$= 11 x 11 then testvar%=1:goto @end.flash2
====» 55IF KC$= 11 x11 THEN TE%=1:GOTO 58

95

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
----------- TANDY COMPUTER PRODUCTS -----------

next loop%
====>> 56NEXT LP%

goto @flash.message2
===::» 57GOTO 43

@end.f1ash2:return
====» 58 RETURN

'The preceding line DOES meet restrictions on the use of 11 RETURN 11

====>>

====>>

====>>

'End of program
====>>

====>>

I***
====>>

@en d i n g • ms s g
====>>

els
====» 66 CLS
print @(l~,l~), 11 This program has been run in its entirety."
====» 67PRINT @(l~,l~), 11 This program has been run in its entirety. 11

end
====» 68END

96

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
----------- TANDY COMPUTER PRODUCTS -----------

Procedure Label

@BEGINNING
@FLASH.MESSAGEl
@ENO .FLASHl
@FLASH.MESSAGE2
@END .FLASH2
@ENDING.MSSG

Variable Label

KBDSCAN$ *
KBDSCAN$ *

LOOP%*
LOOP%*
TESTVAR%

Defn #

6
17
34
41
58
65

Defn #
-- ----

17
41

17
41
4

Line# Referenced at line #'s
------ ----------------------.
7 11
19 8,33
35 22, 24, 29, 31
43 10, 57
58 46,48,53,55
66 9, 11

XLATE Referenced at Line #'s

KB$ 19,21,22,23,23,24,28,29,30,30,31
KC$ 43,45,46,47,47,48,52,53,54,54,55

LO% 20, 25, 27, 32
LP% 44, 49, 51, 56
TE% 7,9,11,24,31,48,55

TBA scrolls screen listings. To pause the listing, press
[SHIFT][@). To resume the scroll process of the listing, press
[SPACEBAR].

TBA displays each source line, followed by====>>, and the object
line.

Although the listing displays the first 6 source lines, they produce
no object code. TBA ignores lines starting with ('), and does not
translate label and variable definition statements into executable
object code. The translation process continues at the line following
the remarks and label and variable definition statements, in this
case, testvar%=0. It translates this line into: 7TE%==0

TBA numbers lines in the object code consecutively, star.ting with
Line 1. It also numbers lines which do not exist in the object code.
It deletes these numbers after processing.

Since there are 68 lines of source code, the object file consists of
Lines 1-68. A cross-reference listing follows the last line of the
source/object code translation. The first part of the table
identifies the translation performed on labels. The left column of
the table contains the label names. Column 2 contains their
definition line numbers in the source code.

97

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
----------- TANDY COMPUTER PRODUCTS -----------

Column 3 identifies the line number in the object code that
corresponds to the definition line number in the source code. For
example, the processor translates the label @beginning (Line 6 in the
source program) into Line 7 in the object program--the first
executable statement following the label definition.

The last column lists all line numbers in the object code which
reference the given label. In the listing of the processed code, the
source line referencing the label @beginning corresponds to object
Line 11. Object Line 11 containing the statement GOTO 7 represents
the label @beginning.

The second part of the table, the variable cross-reference table
(XLATE), shows the variable translations that occur. This table lists
global and local variables defined in the source code. Column 1 in
the variable translation table lists all variables as you define and
use them in the source code. An asterisk (*) follows the names of
local variables. The variables kbdscan$ and loop% appear twice in the
table because they represent local variables used in 2 separate
procedures which translate into 2 distinct variables. Column 2
identifies the source lines that define the variables.

Column 3 gives the object code variable name of the same variable
name in the source code. For example, the global variable textvar%
translates into TE%, the variable kbdscan$ translates into KB$ in the
first procedure, and into KC$ in the second procedure.

The last column gives the line numbers in object code that reference
these variables. For example, the variable TE% appears in Lines
7,9,ll,24,31,48, and 55 of the object code.

TBA groups variables in a cross-reference table in a special order.
It lists string variables first, followed by integer,
single-precision and double-precision variables. Within these
subgroups, global variables appear first within a subgr~up, listed in
alphabetical order according to the variable name used in the source
code. Next, the local variables appear in alphabetical order. This
type of grouping makes it easy to select specific variables in the
table.

98

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
----------- TANDY COMPUTER PRODUCTS -----------

HOW TBA OPERATES

TBA processes source code into object code in a series of steps. In
each of these steps, TBA performs a pass on the source code, which
means that TBA processes the current interim code. Each particular
pass alters the code, changing it from the source code into
executable object code, and places the interim results in the object
filespec. TBA writes an interim object code to the disk containing
the specified object filespec, and uses this code during subsequent
passes.

TBA performs 6 passes on the source code. Each pass performs a
specific processing function that changes the source code into object
code. During these passes, it creates and maintains tables which
store information about labels, directives and variables. The
following briefly describes the actions that occur during each pass.

Pass 1

TBA writes text information from the source file to the object file.
It removes line numbers at the beginning of the line, assigns line
numbers to all text lines, starting with line number 1, incrementing
by 1. As TBA encounters labels, the processor checks to see if the
label has been defined. If it detects a multiply defined label, the
screen displays the proper error message.

Since a label definition in source code produces no object code, TBA
uses the next source text line as the object line number associated
with the definition of that label.

Pass 2

In Pass 2, TBA evaluates variables. It checks the list of labels that
define procedures and changes local variables to 2-character
variables. TBA maintains a table of 2-character variable names
already in use.

TBA handles each procedure individually, starting at the procedure
definition line and ending with the associated RETURN. You can use the same
local variable in 2 different procedures because the processor translates
them into 2 different variables.

99

t,()DEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
----------- TANDY COMPUTER PRODUCTS -----------

It examines the first 2 characters in the local variable and checks
to see if that variable name is in use. For example, if TBA
encounters the local variable test.variable%, the processor attempts
to change this variable to the 2-character variable TE%. If TE%
already exists, it uses TF% if that is not in use.

Passes 3 & 4

In Passes 3 and 4, TBA translates global variables. TBA examines the
entire source code and translates any match of a defined global
variable into a 2-character variable name. Since TBA translates local
variables first, you can use the same variable name to represent a
local and global variable. For example, if you define the variable
test.variable% as global and local, TBA translates it into TE% in the
local procedure and TF% everywhere else in the program.

To use a global variable within a procedure, do not define it as
local. TBA does not translate the global variable until after it
processes the local variables. The global variable receives the same
variable name throughout the program.

Pass 5

In Pass 5, TBA changes all label references to reference the line
number associated with the label. It goes through the table
containing the label definitions and associated line numbers, and
translates all label references in the source code into the
corresponding line number. TBA removes extraneous spaces from text
lines.

Pass 6

In the final pass, TBA compresses the source code and performs output
options. It either lists to the printer or video, and creates an
object file on disk. If you specify FC, TBA compresses ~l spaces
except those found within quotation marks and REM statements. To
produce pure ASCII, TBA examines the high bit in each character. If
it is set, TBA resets it.

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
----------- TANDY COMPUTER PRODUCTS -----------

GENERAL GUIDELINES AND PROGRAM MAINTENANCE

Use of Error Trapping Routines

Error trapping routines play a major role in any well written BASIC
program. Because of the nature of the processing which takes place,
you need to carefully construct the error handling routines.

All ON ERROR GOTO statements reference a label, for example, ON ERROR
GOTO @error.routine. The label defines the entry point into the error
trapping routine. To return to a specific line from an error trapping
routine, use the RESUME command, followed by the label which
represents the point of return. This is an example of how to
establish error trapping routines:

'branch to @error.detected if an error is encountered.

ON ERROR GOTO @error.detected

@error. done

'pro gr am code
I

'end of program code
I

'definition of @error.detected routine

@error.detected

'error trapping code
I

'resume after error at line defined by the label @e;ror.done

RESUME @error.done

l(H

t-ODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
----------- TANDY COMPUTER PRODUCTS -----------

Using a label to define an error trapping routine functions the same
as referencing a line in the program with GOTO. Where you place the
label following the RESUME depends on your program's needs. This
example assumes that you need to repeat the program code if you
encounter a recoverable error. Since you terminate error trapping
routines with a RESUME instead of a RETURN, using local variables in
error trapping routines produces an error during processing.
Remember, in TBA, RETURN ends a procedure and the definition of
variables used in the procedure.

You can use the statement ON ERROR GOTO 0 in the source to turn off
any active ON ERROR GOTO statement.

Enhancing Program Operation and Speed

When TBA creates object files, it writes them to disk in pure
ASCII, ommitting compression codes to represent BASIC keywords. To
load an object file faster, LOAD and SAVE the program to disk, thereby
using compression codes for all BASIC keywords.

Although you define a variable before you use it, defining a local or
global variable in the source code does not initialize it in the
object code. BASIC allows you to initialize variables as you need
them. Initialization slows the operation of the program because you
must establish the variable in BASIC's variable table before you use
it. To make global variables readily accessible in the variable
table, initialize them before you need them.

Because local variables are only valid in the procedure in which you
define them, initilialize only global variables in this manner.

You can initialize variables to contain a specific value as you enter
a program. This example initialize all variables to 0: .. ,./

'Source Code variable definition statement
I

=testvar%, delay.loop1%, total.items%, total.dollars#
I

'variable initialization statements

testvar%=0: de 1 ay. loopl%=0: total. items%=0: total .do 11 ars#=0

102

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
----------- TANDY COMPUTER PRODUCTS -----------

To prevent delays when TBA first encounters a global variable,
initialize them at the beginning of a program. Doing this produces a
noticeable delay when you execute the variable initialization
statements. However, it is better to encounter such a delay before
the program execution begins rather than during execution.

BASIC establishes a variable table when it first encounters a
variable in a program. Every time BASIC accesses a variable, it scans
the variable table. BASIC scans and locates variables placed at the
beginning of the initialization statement quickly. Place frequently
used global variables early in the variable initialization statement.

BASIC accesses integer (%) variables, stored in 2 bytes, faster than
single- or double-precision variables, stored in 4 and 8 bytes
respectively. It accesses single-precision variables faster than
double-precision. When declaring your variable names, use the most
efficient type for the operation. If possible, use integer type
variables in a FOR/ NEXT loop.

Initialize all variables representing string constants at the start
of the program. Do not store any other string information, such as
input from the keyboard or a disk file, in these variables. The
variable's location in the program text in RAM references the string.

Well designed source code consists of a program's main body and
references to procedures that perform various tasks. Although
programming requirements decide the tasks that these procedures
perform, how you write the program determines the speed of its
operation.

Every time you execute a backward branch, BASIC scans the program
text from the beginning line to the branching line. Position
frequently referenced routines at the beginning of the program text.
To do this, perform a branch to the main body of the program, thereby
bypassing the procedures located at the beginning of th.e program
text. Even initializing many global variables leaves substantial
program code in front of these procedures. Since initializing global
variables is a 1 time operation, do it at the end of the program
text. This program layout represents how such a structure can
increase the speed of executing a program:

103

MJDEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
----------- TANDY CDMPUT&R PRODUCTS----------

1. Global variable definition statements
(do not appear in object code)

2. Branch statement to the global variable initialization
(Step 6)

3. Procedures which are accessed frequently
4. Main Body of the program
5. Procedures which are accessed infrequently

(such as error trapping)
6. Global variable initialization statements
7. Branch statement to the Main body of the program

(Step 4)

Use of CHAIN MERGE, and COMMON

Although TBA allows a certain amount of code compress ion, sometimes a
program's amount of code or data storage requirements force you to
break it up into several elements, or into a suite of smaller
programs running together. With .its CHAIN MERGE and COMMON options,
Model 4 BASIC allows a sophisticated method of inter-program
communication.

You can run each program in the suite without using data or other
material from another program only if the programs refer to one
another by RUN filename. You write and process the individual
programs without regard to other programs, and without taking any
special action.

If 1 or more programs in the suite use CHAIN filespec to refer to
another program in the suite, use the ALL parameter or COMMON
statement to pass data between the calling and the called programs.
You need to take special action to ensure the variables maintain
their common names during TBA processing, which changes matching
variable names. For instance, if 2 programs contain only,,2 globals,
say LOOP1%, LOOP2%, and no local variables already declared can
translate into LO% or LP% (LOCAL.INTEGER% translates into LO%, of
course), then TBA processes both programs with the 2 globals
translated into LO% and LP%. When you consider chaining, prepare
contingencies for variable name changes in advance.

To use CHAIN with COMMON, alphabetically separate variables you are
passing between programs from all other variables. Using a prefix
such as CO. reminds you that the variable CO.LOOP!% is common to both
programs and separates it from all other variables. Of course, other

1~4

MODEL 4 TRSDOS 6.02.0~ UTILITIES PACKAGE
----------- TANDY COMPUTER PRODUCTS -----------

variables can have their own prefixes, but not with the initial
letter C. If the programs contain many variables, choosing a prefix
becomes more difficult. It is preferable, to give common variables
initial letters. For example, AA. through CZ., and other variables
the initial letters EA. through ZZ.

You want the TBA definition statements of the common variables to
appear identical in both the ca11ed and the calling programs. To copy
these statements in both programs, set aside a separate line or group
of lines for this purpose.

For clarity, place the COMMON statement's variable list in the same
order and the same group of lines as, but in a separate file from,
the definition statements.

To use CHAIN with the ALL parameter, define all variables as globals,
and implement identical definition statements in the called and
calling programs. This prevents you from using local variables in
defined procedures, and from reusing a series of small modules to
create larger programs. Instead, organize the programs to use the
COMMON statement to eliminate variables not really required in called
programs, and to exclude them from the COMMON block.

CHAIN MERGE requires you to imp1ement one of these approaches and
handle line numbers in the fo11owing manner.

When you use CHAIN with the line number options, you control line
numbers because you create the calling and the called programs with
the BASIC editor. TBA invalidates this. The BASIC line:

1~3~ CHAIN MERGE "0VRLAY2", li0, , DELETE 120-140

fails to produce the desired results. With certain consistent source
program structures, TBA successfully processes code containing
similar CHAIN MERGE syntax. Use this structure when creating files
th at contain COMMON or CHAIN MERGE : .

1. Global variable definition statements, for COMMON
(do not appear in object code)
COMMON statement (all COMMON global variables).

2. @ - label
Global variable definition statements, for variables used
before first overlay call, but not needed thereafter.

1/}5

MODEL 4 TRSDOS 6.02.0~ UTILITIES PACKAGE
----------- TANDY COMPUTER PRODUCTS -----------

Global variable initialization statements.
Portion of main progarn that you execute only on entry to
program.
Branch statement to the Main body of the program (Step 4)
REM statements acting as place holders for OVERLAY section
which is here.

3. Resident Procedures accessed frequently
4. Resident Main Body of the program

When you need overlays, CHAIN them in to overwrite
@ - label (Step 2)

5. Resident Procedures accessed infrequently.
(such as error trapping)

NOTE: The similar outline for Enhancing Operation and Speed
includes Steps 6 and 7. In this outline, they are included as
the first 2 elements of Step 2.

The overlay area in this outline is Step 2. It initially contains
code that you use only on entering the program, and that you can
overwrite when you call the first overlay. To make this outline work,
create a variable name scheme that allows all programs in the suite
to share an identical global variable list and COMMON statement (Step
1). Estimate the number of lines of code required for the largest
overlay section. This way, TBA reserves the number of lines that the
overlays occupy between Steps 2 and 3.

To accomplish a CHAIN MERGE, follow this process or see Program 4.
The numbers refer to the step numbers in the outline:

PREPARATION

Identify routines you want as overlays.

Estimat~ length of overlay in lines, not amount of memory.

Identify variables used throughout the program.

Group these into common ~lobals, globals used only on entry, local
variables for resident procedures, and local variables used in
overlays.

1~6

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
---------- TANDY CDMPUTER PRODUCTS-----------

Decide on variable name scheme, which prevents TBA from giving the
common variables different names in different programs. For example,
use the prefixes of CO. GL. LO. OV.

Ensure that existing procedures fit into the variable name scheme.

Create a common global variable definition list, and COMMON statement
as a file to reuse.

RES IOENT PROGRAM

Begin source for resident program with the block that contains global
variable definitions and COMMON statement. (Step #1).

First line of Step #2 is a label followed by the code you execute on
entry to the program, for example, @START.OVRLAY. The active code
finishes with a branch to the code contained in Step #4, for example,
GOTO @MAIN. Conclude Step #2 with the number of REM statements that
make the total number of lines in Step #2 equal to the number of
lines estimated for the largest overlay.
Step #4 contains the main body of the program. When this code
requires any of the overlays, it branches forward to a group of
statements at the conclusion of Step #4, which handle the entry to,
and exit from, the overlays. For example:

1 END of MAINLINE section. START of OVRLAY call section.
1 Execute OVRLAYs by setting direction switch CO.WHICH.OV%
1 to 1 or 2 then GOTO @CALL.OVRLAY from MAINLINE
' on return from OVRLAYs, GO (back) TO CALLERx
1 The merged program will always restart @EXEC.OVRLAY
1 which will GOSUB @START (1st line in the OVRLAY)
' MAINLINE needs COMMON block (globals) to talk to OVRLAYs
' OVRLAYs forced to equal lengths so no need to DEL~JE lines.

@CALL.OVRLAY
ON CO.WHICH.OV% GOTO @OVRLAYl.CALL, @OVRLAY2.CALL
GOTO @NO.OVRLAY

@RETURN.OVRLAY
ON CO.WHICH.OV% GOTO @CALLERl, @CALLER2

@OVRLAYl.CALL
IF CO.RESIDENT%= 1 THEN GOTO @EXEC.OVRLAY
CO. RESIDENT% = 1
CHAIN MERGE 11 0VRLAY1 11 , @EXEC .OVRLAY

ftl'>DEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
---------- TANDY COMPUTER PRODUCTS----------

@OVRLAY2.CALL
IF CO.RESIDENT%= 2 THEN GOTO @EXEC.OVRLAY
CO.RESIDENT%= 2
CHAIN MERGE 11 OVRLAY2 11 , @EXEC .OVRLAY

@EXEC.OVRLAY
GOSUB @START.OVRLAY
GOTO @RETURN.OVRLAY

1 END of OVRLAY call section

If a second group of programs uses overlays, make a small, reusable
file for this group of lines.

Copy seldom used procedure (Step #5) into the source, or code and save
it to reuse later.

Collect frequently used procedures (Step #3) into a file to copy into
the resident source. The resident source is now complete, and saved for
TBA processing. Process it to create the cross-reference table.

OVERLAY SECTIONS

Numbered references here refer back to 5 numbered sections in the
resident program above.

For each overlay:

Start the overlay with the common block File 1, created for the
resident program. Change the contents of remark statements and
directives but do not insert or delete any lines.

First line of Step #2 is a label (for example, @START.OVRLAY) followed
by the actual code of the overlay.

Make the overlay as self-contained as possible, and code it to allow 1
entry point (@START.OVRLAY) and 1 exit (RETURN) back to the end of the
main body of the program Step #4.

If the overlay requires its own local procedures, prefix the variable
names to prevent TBA from giving the common globals different names in
the overlay than they haye in the resident program.

1~8

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
----------- TANDY COMPUTER PADDUCTB -----------

If you encounter error conditions in the overlay, execute the ON ERROR
GOTO in the main body of the program (Step #4). Make no direct
references to the infrequently used subroutines in Step #5.

If the overlay requires the use of any of the frequently used
subroutines in Step #3, then pad the Step #2 section with REM
statements up to the number of lines. You can merge the file which
contains all the frequently used procedures Step #3 into this overlay.
Then, TBA can translate the procedure 1abels to line numbers
accurately. Both the resident and the overlay programs contain
duplicate copies of the Step #3 section.

The overlay source file is now ready for TBA processing.

Process the file, and double check the cross-reference table against
the resident program's cross-reference to ensure an exact match between
appropriate variable names, and between procedure labels that translate
to the same line number. For example, @START.OVRLAY, and Step #3
section if required.

When TBA processes a source file~ it produces object code in sequential
lines ordered from 1 to the maximum number of lines in the source. Some
lines such as labels, definitions, and remarks starting with (1), do not
translate into an object code line, making it unlikely for an incoming
overlay to completely overwrite the previous overlay.

To make each overlay completely overwrite the previous one, CHAIN
MERGE the incoming overlay into memory. To do this, create a file in
BASIC with sequential line numbers, from 1 to the requisite length.
For example, the length of the common block Step #1, plus the length
of largest overlay Step #2. Each line contains only REM. Load this
file into BASIC. Then, for each overlay, MERGE the object file from
TBA on top of the newly created file. This eliminates line number
gaps in the resulting merged file.

.,/

You do not need the DELETE parameter because every line that the
CHAIN MERGE statement deletes is either in the previous overlay, or
in the Step #2 section of the resident program.

The resident program, and the overlays it requires, is now ready to
test. If it requires modifications now or at a later date, you must
take care to ensure that changes made to one program segment do not
affect the way other segments run. If they do, reprocess each program
that contains the changed segment.

1~9

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
----------- TANDY COMPUTER PRODUCTS -----------

The outline used here is different from the outline in "Enhancing
Operation and Speed." The length of the overlay section (Step #2)
moves the position of frequently used subroutines (Step #3) further
down in memory. If the overlay portion is very large, or there are
numerous calls to Step #3, the program slows down. To increase speed,
slightly modify the outline and procedures above. ·

Resident program (Step #2) now contains only a GOTO instruction to a
new step (#3A) created between Steps 3 and 4. The previous contents
of Step 2 become the overlay section in #3A.

Overlay programs require similar treatment. The contents of Step 2
move into Step 3A. Step 3 changes from optional to required. Step 2
contains no active code. Instead, it has the same number of REM
statements as the number of lines in Step 2 of the resident program.
Thus, Step 3 in both resident and overlay programs starts at the same
line number after processing, and the program needs no other
modifications.

Note: These suggestions can help you develop consistent program
structures. Use the method that makes your code most transportable to
future programs you write, and do not stint on documentation which
clarifies the source code for those who maintain the programs in the
future.

Maintaining Programs

When maintaining programs created by TBA, change the program in the
source code, not the object code. Because you write the source code
in descriptive dialogue, it is easier to follow than the object code,
where labels change to line numbers, variable names use only 2
characters, and extraneous spaces gen er a 1 ly do not exi,S.-t.

More important, by restricting changes to the source code, then
processing it into object code, you ensure that there is one current
version of a program. If you correct a slight error in the program by
modifying the object code, then decide to add an additional feature
to the program by editing the source code, the source code does not
reflect the change made in the object code.

110

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
----------- TANDY COMPUTER PRODUCTS----------

Example Programs

This section contains source BASIC programs and the object code. To
learn how the processor functions and what results you obtain through
the processing operation, experiment with these programs before you
write your own source code.

You can enter these programs into almost any editor, but when you
first start to work with TBA, it is easier to use an editor with
which you are familiar.

Type this program into an editor or BASIC and save it as FACTOR/TBA:

*TITLE"EXERCISE 1"
'global definition statements are below
=FACTOR$,LOOP1! ,LOOP2! ,HALF!,HORIZ.LINE$,START!,END!,IN.PUT$
=PRIME.FLAG%,PRIME.ARRAY!,PRIME.FACTOR$,COUNTER%,START2!
=LOOP.COUNT%,PRIMES.FOUND%

'dimension and clear statements;
'both array variables are defined above.

DIM PRIME.ARRAY!(l~),PRIME.FACTOR$(1~)
'program execution start in case subroutines are placed
'there at a later date.

@START

CLS
INPUT "ORIGIN OF SCAN"; IN.PUT$

'all IF statements are indented to set them apart
IF VAL(IN.PUT$)<2 THEN @START

START!=INT(VAL(IN.PUT$)}
INPUT" END OF SCAN"; IN.PUT$
END!=(VAL(IN.PUT$))

IF END!<START! THEN SWAP START!,END!
HORIZ.LINE$=STRING$(79,61)
CLS

111

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
---------- TANDY COMPUTER PRODUCTS----------

@START .LOOPl

FOR LOOPl! = START! TO ENO!
'statements contained within a FOR/NEXT loop are tabbed
'over for clarity
HALF!=LOOPl!
FACTOR$=""
PRINT@ 0, "factoring "USING"###,###";LOOPl!;
PRINT@ 4~,"primes found on this scan";
PRINT USING 11 ##,### 11 ;PRIMES.FOUND%;
PRINT @ 80,"prime factors : ";CHR$(30);
PRINT HORIZ.LINE$;: START2!=2

@START. l .LOOP2

FOR LOOP2! = 2 TO HALF!
IF HALF!/LOOP2!=INT(HALF!/LOOP2!) THEN GOSUB @GOT.ONE

NEXT LOOP 2!

@END.1.LOOP2

IF VAL(FACTOR$) = LOOPl! THEN GOSUB @PRIME ELSE GOSUB @NOT.PRIME
PRIME.ARRAY!(COUNTER%)=LOOP1!
PRIME.FACTOR$(COUNTER%)=FACTOR$
LOOP.COUNT%=COUNTER%

@START.2.LOOP2
I

FOR LOOP2!=0 TO 10
PRINT @(LOOP2!+4,0),"";
PRINT PRIME.ARRAY!(LOOP.COUNT%), PRIME.FACTOR$(LOOP.COUNT%);
PRINT CHR$(30);
LOOP.COUNT%=LOOP.COUNT%-l

IF LOOP.COUNT%=-1 THEN LOOP.COUNT%=10
NEXT LOOP2!

@END. 2 .LOOP 2

COUNTER%=COUNTER%+1
IF COUNTER%=11 THEN COUNTER% =0

NEXT LOOPl!
@END.LOOPl
ENO

112

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
----------- TANDY COMPUTER PR00UCTB -----------

If you direct the processed output to a printer, prepare the printer
for output and ensure proper pagination by sending a top-of-form to
the printer. To do so, enter the TOF command at the TRSDOS Ready
prompt. If the command does not work, set the *FF device to
FORMS/FLT.

TOF causes the printer to advance the paper to its top-of-form
position. Position the paper so that the first line of print appears
at the start line of the paper. If you have to do this manually, take
the printer off-line before you advance the paper.

If you are using an 80 column printer, use the CHARS parameter to
allow for proper paging. TBA prints 132 characters per line. Using an
00 column printer can cause wrap-around and affect pagination. When
the printer is ready, direct the processed code to it.

To process this file, type:

TBA [ENTER]

The first prompt asks for the source file. Type:

FACTOR [ENTER]

TBA searches for the file. You can also enter the entire filespec.

The second prompt asks for the object filespec. Press [ENTER] to
cause TBA to use FACTOR/BAS as a filename for the processing
operation and the finished file.

The third prompt requests information dealing with processing
parameters. If you want to send the object listing to the screen,
press [ENTER]. If you prefer to send the listing to the printer,
type:

LP [ENTER]

The fourth prompt requests information about any directives on which
you want the program to act. Since the source file does not contain
any processing expressions, answer this prompt by pressing [ENTER].

113

MODEL 4 TRSDOS 6.02.0~ UTILITIES PACKAGE
----------- TANDY COMPUTER PRODUCTS -----------

TBA begins to process the file. At the beginning of each pass, a
message appears on the screen. Shortly after the Pass 5 message
appears, TBA prints the file to the screen or printer and writes the
final object file to the diskette.

To view the resulting BASIC program, enter these commands:

BASIC [ENTER]
LOAD "FACTOR/BAS"[ENTERJ
SAVE "FACTOR/BAS" (ENTER]

Since TBA creates an ASCII file, it does not store any of the
compression codes BASIC uses in the file. You can load a BASIC
program stored in ASCII. It takes more time to load a program stored
in ASCII than a program stored in compressed form. To store the
program on the diskette in compressed form, and perform subsequent
loads of the program faster, TBA instructs you to resave the program.

To compare the source and object codes, LIST or LLIST the program.
The object code does not use 1 of the variables defined in source
code, but you can locate this Jariable by inspecting the
cross-reference table.

If you complete the processing operation successfully, TBA creates
this object code:

8 DIM PR!{10),PR${10)
14 CLS
15 INPUT "ORIGIN OF SCAN"; IN$
17 IF VAL(IN$)<2 THEN 14
18 ST!=INT(VAL(IN$))
19 INPUT II END OF SCAN 11 ; IN$
20 EN!=(VAL(IN$))
21 IF EN!<ST! THEN SWAP ST!,EN!
22 HO$=STRING$(79,61)
22 CLS
27 FOR LO! = ST! TO EN!
3() HA! =LO!
31 FA$=" 11

32 PRINT@ 0, "factoring 11 USING 11 ###,### 11 ;LO!;
33 PRINT@ 4(),"primes found on this scan";
34 PRINT USING 11 ##,### 11 ;PS%;
35 PRINT@ 80,"prime factors: ";CHR$(30);

114

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
---------- TANDY COMPUTER PRODUCTS----------

36 PRINT HO$;: SU!=2
40 FOR LP! = 2 TO HA!
41 IF HA!/LP!=INT(HA!/LP!) THEN GOSUB 73
42 NEXT LP!
46 IF VAL(FA$) = LO! THEN GOSUB 81 ELSE GOSUB 87
47 PR! (CO%)=LO !
48 PR$(CO%)=FA$
49 LO%=CO%
53 FOR LP!=0 TO 10
54 PRINT @(LP!+4,0),"";
55 PRINT PR!(LO%), PR$(LO%);
56 PRINT CHR$(30);
57 L0%=L0%-1
58 IF LO%=-1 THEN LO%=10
59 NEXT LP!
63 CO%= CO%+ 1
64 IF C0%=11 THEN CO% =0
65 NEXT LO!
67 END
73 FA$=FA$+STR$(LP!)+" x"
74 PRINT@ 96,FA$;
75 HA!=HA!/LP!
76 LP! = HA! + 1
77 RETURN
81 FA$="* Prime Number*"
82 PS%=PS%+ 1
83 RETURN
87 FA$=LEFT$(FA$,LEN(FA$)-l)
88 RETURN

Merging Procedures

You do not see the full benefit of source code independent of the line
numbers until you complete a program which relies heavil/ on reusing TBA
procedures already created and debugged. Therefore, the merge process
itself is important for programming with TBA.

The following 3 program listings represent a main program module, and 2
other programs. The other 2 programs can merge into the main module. These
2 procedures represent modules used in other programs.

After you enter the programs in to the editor, save them to disk under the
name specified. The names are important for the merging steps.

115

MODEL 4 TRSDOS 6.02.0(.;! UTILITIES PACKAGE
---------- TANDY COMPUTER PRODUCTS----------

MAIN PROGRAM - MAIN/TBA

' exercise 2 main body program : filename MAIN/TBA
*TITLE "Exercise 2"

=INP$,AT%,FIELD%,CENTER$,WIDTH%,DEVICE%, STRING.ARRAY$,LOOP%,LOOP1%
DIM STRING.ARRAY$(5~)
GOTO @MAIN

'INPUT PROCEDURE WILL GO HERE
'CENTER PROCEDURE WILL GO HERE
@MAIN

CLS:PRINT "Enter a sentence of less than 50 words"
PRINT STRING$(79,61)
PRINT @16(.;!,"Enter@ to stop"
FOR LOOP%= 1 TO 5(.;!

PRINT @24~ ,CHR$(3(.;!); "Last Entry

PRINT STRING.ARRAY(LOOP%-1)

II •

'

PRINT @320,"Current Entry="
AT%=336:FIELD%=1~:GOSUB @INPUT

IF INP$ = "@ 11 THEN @DISPLAY. VIDEO
STRING.ARRAY$(LOOP%)=INP$

NEXT LOOP%
@DISPLAY. VIDEO

WIDTH%=8~:DEVICE%=0
CLS
FOR LOOP1%= 1 TO LOOP%-l

CENTER$=STRING.ARRAY$(LOOP1%)
GOSUB @CENTER.DISPLAY

END
@WAIT. FOR. ENTER

IF LOOP1% MOD 23 = 0 THEN GOSUB @WAIT.FOR.ENTER
NEXT LOOP1%

PRINT "Press <ENTER> to continue";
AT%=23*8(.H39: FIELD%=1: INP$="* 11

WHILE INP$<>'11'

GOSUB @INPUT
WEND
CLS
RETURN

116

MODEL 4 TRSDOS 6.02.0~ UTILITIES PACKAGE
---------- TANDY CDMPUTER PRODUCTS----------

PROCEDURE CENTER/TBA

'merge into any TBA Source file & define CENTER$ as a Global
'define WIDTH% and DEVICE% as Global
'ENTRY CONDITIONS:

I USE:

'CENTER$= desired string
'DEVICE%= 0 for video
I OR
'DEVICE%= 1 for printer
'WIDTH%= total columns

1 GOSUB @CENTER.DISPLAY
'EXIT CONDITIONS:

'DEVICE= -1 for normal exit

@CENTER.DISPLAY=FROM.LEFT%,WIDTH1%,LENGTH%
'width will default to 8~

IF WIDTH%<= 1 THEN WIDTH%= 8~
WIDTH1% = INT(WIOTH%/2)
LENGTH%= LEN(CENTER$)

'take center of string if too wide for device
WHILE LENGTH% > WIDTH%

WEND

CENTER$= MID$(CENTER$,(LENGTH%-WIDTH%)/2,WIOTH%)
LENGTH%= LEN(CENTER$)

FROM.LEFT%= WIDTH1%-INT(LENGTH%/2)
'Default is screen

IF DEVICE%< 0 OR DEVICE%> 1 THEN DEVICE%= 0
'screen

WHILE DEVICE%= 0

WEND

PRINT TAB(FROM.LEFT%)CENTER$
DEVICE%= -1

WHILE DEVICE%= 1

WEND
@EXIT.CENTER

LPRINT TAB(FROM.LEFT%)CENTER$
DEVICE%= -1

RETURN

117

t-lJDEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
--------- TANDY COMPUTER PRODUCTS---------

PROCEDURE INPUT/TBA

'Globals used : FIELD%,AT%,INP$
'ENTRY CONDITIONS

FIELD%= number of characters wanted (plus 1 ?)
AT% = character position for input

I USE :GOSUB @INPUT
'EXIT CONDITIONS . .

INP$ = string returned from keyboard.
I:::

'INPUT SUBROUTINE
I:::

@INPUT=INK$,FLASH.LOC%,FIELD.LEN%,AT.LEN%
@BEGIN. INPUT

FIELD.LEN%=FIELD%:AT.LEN%=AT%
INK$=11 II: !NP$=""
PRINT@ AT%,STRING$(FIELD%,138);

@RE. INPUT
FLASH.LOG%= LEN(INP$) .
PRINT@ AT.LEN%+ FLASH.LOG%,"";
INK$ = INKEY$
WHILE INK$ = 1111

INK$ = INKEY$
WEND

@PROC. INPUT
IF INK$=CHR$(13)THEN @END.INPUT
IF INK$=CHR$(8) THEN FIELD.LEN%=FIELD.LEN%+1
IF FIELD.LEN%>FIELD% THEN @BEGIN.INPUT
IF INK$=CHR$(8) THEN INP$=LEFT$(INP$,LEN(INP$)-1):
IF ASC(INK$)<32 THEN INK$="": GOTO @DISP.FLD
INP $=INP $+ INK$
FIELD.LEN%=FIELD.LEN%-1
IF FIELD .LEN%=0 THEN PRINT @ AT%, !NP$;: GOTO @END .,JNPUT

@DISP.FLD ~
PRINT@ AT%, INP$+STRING$(FIELD.LEN%,138);
GOTO @RE. INPUT

@END.r-NPUT
IF FIELD.LEN%<>0 THEN PRINT@ AT%,INP$;SPACE$(FIELD.LEN%);
RETURN

'END OF INPUT SUBROUTINE
I

118

MODEL 4 TRSOOS 6.02.00 UTILITIES PACKAGE
----------- TANDY COMPUTER PRODUCTS -----------

Merge instructions for ALEDIT

Enter these 3 programs into ALEDIT, and write them to disk under the
3 file names:

MAIN/TBA
INPUT /TBA
CENTER/TBA

To load all 3 files into ALEDIT, type the fo11owing:

ALEO IT [ENTER J
LINPUT/TBA [ENTER]
LCENTER/TBA$C [ENTER]
LMAIN/TBA$C [ENTER]

'from TRSOOS Ready
'load INPUT procedure
'Chain CENTER procedure
'Chain MAIN body

These commands place the 3 files in memory in correct order: the 2
procedures first, followed by the main body. However, the first few
lines of MAIN/TBA belong at the top of the program, not buried in the
middle of the text. To move them to the top, type:

#81

1
[down-arrow] 6 times

2
T

M

'goto line 81 which should be
'exercise 2 main body, etc.
'Begin Mark this line
'find end of section to be moved
'CENTER PROCEDURE WILL GO HERE
'End Mark this line
'goto first line of text
'globals used : FIELD%, etc.
'Move Marked text in above here

The text is now in the correct order for TBA processing.

119

~DEL 4 TRSDOS 6.02.0(1 UTILITIES PACKAGE
----------TANDY COMPUTER PRODUCTS----------

Using the filename MERGE/TBA these commands complete processing:

WMERGE/TBA [ENTER]
Q [ENTER]
LIST MERGE/TBA (N,P)[ENTER]
TOF [ENTER]
TBA [ENTER]
MERGE /TBA [ENTER]
MERGE/BAS [ENTER]
LP [ENTER]
[ENTER]

1 Write to disk
'Return to TR.SOOS Ready
'Hard-copy with line numbers
'Printer top of forms
1 Invoke TBA processor
'Source filespec
'Object filespec
'Process to printer
•no Directives required

If TBA reports errors during processing, do not correct them in the
file MERGE/TBA. Correct them in INPUT/TBA, CENTER/TBA, or MAIN/TBA.
TBA tells you the number of the incorrect line in MERGE/TBA, and your
listing helps you identify which of the 3 programs contains that
line.

Correct the 3 individual source codes, then start the merge process
again.

The processing cycle is now complete, and you can run the program
MERGE/BAS from BASIC.

If BASIC reports errors, or the program fails to run as expected,
return again to the 3 individual source codes, and correct any
problems you encounter.

Notes on the use of ALEDIT

ALEDIT is part of the Assembly Language Development System, ALDS,
(Catalog number 26-2012). Certain other language packag:e-s for the
Model 4 use the same editor as ALDS.

Disadvantages of using ALEDIT include:

1) A partial full screen editor.
2) Global find or replace only acts on the first occurence in a line.
3) Maximum line length is 80 characters.
4) Tabs are defined as length 8

120

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
----------- TANDY COMPUTER PRODUCTS -----------

You may need lines of more than 8(} characters because your program
includes BASIC lines such as:

IF condition THEN actionl : action2: action ••• : etc.

You can produce the same effect in lines shorter th~n 80 characters,
using a more structured form of code, by either:

IF condition THEN GOSUB @procedure.label

or:

WHILE condition.flag
action 1
action2
action •••
(change condition.flag)

WEND

Using these methods also relieves the problem of reducing the
available line length by 8 characters every time you use a tab.
Alternatively, the TRSOOS KSM filter allows [CLEAR][AJ, [CLEAR][B],
and [CLEAR][CJ, which you can set up equal to 3, 6, and 9 spaces
respectively.

Advantages of ALEDIT include:

1) Offers over 41K of text space.
2) Allows moving text in memory, and some repetitive actions.
3) Does not require line numbers, allows you to address text by line

numbers.
4) Requires no special method of saving the file.
5) Functions with KSM filter. Some editors do not respond to KSM.

Many editors do not allow this amount of text. During the.debugging
or merging stages of program development, it is convenient to
directly reach a particular line of source. You do not need special
instructions to save a file, and the KSM filter speeds up the
keyboard work of entering source code.

121

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
---------- TANDY COMPUTER PRODUCTS----------

Merge Instructions for BASIC

Enter the 3 programs above into BASIC. Use the AUTO feature of the
BASIC editor to provide line numbers. Which line numbers you assign
to the source code lines is unimportant. If you omit a line, insert
it. When you complete the source of each program, type:

RENUM [ENTER]

to renumber the program in memory to start at line 10 and increase in
increments of 10s. Save each file to disk using the syntax:

SAVE "filename/ext:d",A [ENTER]

and the filenames:

MAIN /TBA
INPUT /TBA
CENTER/TBA

After you comp 1 ete a 11 3 fi 1 es and save them to disk,, these
instructions renumber each file, giving them line numbers which
position the routines when you merge them. At the BASIC Ready prompt,
type:

LOAD "INPUT/TBA" [ENTER]
RENUM 100,10,1 [ENTER]

LIST [ENTER]
SAVE 11 INPUT/TBA 11 ,A [ENTER]
LOAD "CENTER/TBA" [ENTER]
RENUM 200,10,1 [ENTER]

LIST [ENTER]
SAVE "CENTER/TBA",A [ENTER]
LOAD "MAIN/TBA" [ENTER]
LIST 80 [ENTER]
RENUM 300,80,1 (ENTER]

LIST [ENTER]
MERGE "INPUT/TBA" [ENTER]
MERGE 11 CENTER/TBA 11 [ENTER]

122

'load INPUT into memory
'renumber to 100 increment 1
'old 1st line (10) becomes 100
'confirm above.
'to disk.
'load CENTER into memory
'renumber to 200 increment 1
'old 1st line (10) becomes 200
'to confirm
'to disk .
'load MAIN into memory
'should show @MAIN
'renumber to 300 increment 1
'old 80 becomes 300
'to confirm
'merge INPUT into MAIN
'merge CENTER into both

t-t)DEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
---------- TANDY CDMPUTEl=I Pr:IDDUCTS ----------

LIST [ENTER]

RENUM 1,19,1 [ENTER]

LIST [ENTER]
LUST [ENTER]
SAVE •MERGE/TBA•,A [ENTER]
SYSTEM [ENTER]

1 10-70 = 1st part of MAIN
1 10(1 on = INPUT
1 200 on= CENTER
1 3(1(1 on= 2nd part of MAIN
•renumber to 1 increment 1
'old 1st line 00) becomes 1
•to confirm
'hard copy with line numbers
'complete to disk
'to TRSDOS Ready

Once you complete the file MERGE/TBA, type:

TOF [ENTER]
TBA [ENTER]
ftERGE /TBA [ENTER]
MERGE/BAS [ENTER]
LP [ENTER]
[ENTER]

'Printer top of forms
'Invoke TBA processor
'Source filespec
'Object filespec
'Process to printer
'no Directives required

If TBA reports errors during processing, do not correct them in the
file MERGE/TBA. Correct them in INPUT/TBA, CENTER/TBA, or MAIN/TBA.
TBA tells you the line number in MERGE/TBA which contains the error,
and the listing helps you identify which of the 3 programs contains
that line.

Correct the 3 individual source codes, then start the merge process
again. Keep in mind that line numbers in the 3 source codes are not
identical to those in MERGE/TBA.

The processing cycle is now complete, and you can run the program
MERGE/BAS from BASIC.

If BASIC reports errors, or the program fails to run as you
expected, return to the 3 individual source codes and co.r::.rect any
problems you encounter.

Notes on Using the BASIC editor

Advantages to Using BASIC include:

1) Avai lablity
2) Fami 1 i arity
3) Less likely to create a line too long for TBA to process.
4) Runs with KSM filter and JCL processor.

123

MODEL 4 TRSDOS 6.02.0~ UTILITIES PACKAGE
----------- TANDY COMPUTER PRODUCTS -----------

Disadvantages include:

1) Line based editor, with no global find or replace functions.
2) Need to use RENUM, SAVE, MERGE, and DELETE several times each

time you move a line.
3) Must make each SAVE with the [,A] option to merge and process with

TBA

Example program #3

The third example program is longer and more complicated. It follows
the outline structure recommended for a stand-alone TBA source
program, described in "Enhancing Operation and Speed." Reread that
section of the manual before continuing.

This program allows you to print a variable number of labels with the
same content, such as you require for a floppy backup of a hard disk.
Two directives in the program allow for different types of labels.
The program also allows you to maintain a library of labels for
reuse.

Because the program includes 1 of the procedures from Example 2, you
do not need to type it in again. It also includes several other
programs that you treat as procedures. Merge them into the program
using the same sort of method described in "Merge Procedures Using
ALEDIT, or BASIC. 11

124

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
--------- TANDY COMPUTER PRODUCTS---------

The following is the file as it appears after you complete the merge
process, but before TBA processes it:

*TITLE "LABELS/TBA Ex 3"
=ARRAY.SIZE%,LABEL.ARRAY$,FIELD%,AT%,INP$
=GLOBAL.LOOP%,GLOBAL.LOOP1%,TEMP%,TEMPORARY$,LABEL.LENGTH%
=LINE.LENGTH%,NAME.OF.FILE$,CLEAR.LINE$,CLEAR.SCREEN$,NO.OF.LABELS%
=AT.ENTER%,INK$,STAT$

GOTO @START

I:::

'INPUT SUBROUTINE
I:::

@INPUT=INK$,FLASH.LOC%,FIELO.LEN%,AT.LEN%
@BEGIN.INPUT

FIELO.LEN%=FIEL0%:AT.LEN%=AT%
INK$=1111 : INP$= 1111

PRINT@ AT%,STRING$(FIEL0%,138);
@RE. INPUT

FLASH.LDC%= LEN(INP$)
PRINT @ AT .LEN% + FLASH.LDC% , 1111 ;

INK$= INKEY$
WHILE INK$ = 1111

INK$ = INKEY$
WEND

@PROC. INPUT
IF INK$=CHR$(13)THEN @ENO.INPUT
IF INK$=CHR$(8) THEN FIELO.LEN%=FIELO.LEN%+1
IF FIELO.LEN%>FIELO% THEN @BEGIN.INPUT
IF INK$=CHR$(8) THEN INP$=LEFT$(INP$,LEN(INP$)-1)
IF ASC(INK$)<32 THEN INK$="": GOTO @OISP.FLO

INP$=INP$+INK$
FIELO.LEN%=FIELO.LEN%-1 .~

IF FIELO.LEN%=0 THEN PRINT@ AT%,INP$;:GOTO @ENO.INPUT
@OISP.FLD

PRINT@ AT%, INP$+STRING$(FIELD.LEN%,138);
GOTO @RE. INPUT

@END.INPUT
IF FIELD.LEN%<>0 THEN PRINT@ AT%,INP$;SPACE$(FIELD.LEN%);

RETURN

'END OF INPUT SUBROUTINE

125

t-()OEL 4 TRSOOS 6.02.00 UTILITIES PACKAGE
--------- TANDY COMPUTER PRODUCTS---------

'===
'PRESS ENTER TO CONTINUE SUBROUTINE
I:::

@PRESS.ENTER
PRINT@ AT.ENTER%,"PRESS <ENTER> TO CONTINUE"

@INPUT.ENTER
AT%= AT.ENTER%+3(1: FIELD%=1:GOSUB @INPUT

IF !NP$<>"" THEN @INPUT. ENTER
RETURN

'ENO OF PRESS ENTER SUBROUTINE
I

'===
'DISPLAY LABEL SUBROUTINE
'===

@OISPL.LABEL

I:::

PRINT@ (5,0),CLEAR.SCREEN$
FOR GLOBAL.LOOP%=1 TO ARRAY.SIZE%

PRINT @ (GLOBAL.LOOP%+5,0), "LINE #";
PR I NT GLOBAL. LOOP%; II II ;

PRINT LABEL.ARRAY$(GLOBAL.LOOP%)
NEXT GLOBAL.LOOP%
RETURN

'STOP PRINTING ROUTINE
I:::

@STOP. PR INTI NG
PRINT @(23,0),CLEAR.SCREEN$;
PRINT "00 YOU WISH TO STOP PRINTING (Y /N)";

@INPUT. STOP
AT%=(8(1*23+38) ~'
FIEL0%=2 : !NP$ = ,u,
WHILE !NP$<) nyn ANO !NP$<> 11 N11

GOSUB @INPUT
WEND
PRINT@ (23,0),CLEAR.SCREEN$;
RETURN

126

MODEL 4 TRSOOS 6.02.00 UTILITIES PACKAGE
--------- TANDY COMPUTER PRODUCTS---------

@START
I:::

'IF THE DIRECTIVE "EIGHT" WAS PASSED, SET ARRAY.SIZE% TO 8
I:::

*IF EIGHT
ARRAY.SIZE%=8
GOTO @OIMENS ION

*END
I:::

1 IF THE DIRECTIVE 11 EIGHT 11 WAS NOT PASSED, SET ARRAY .SIZE% TO 6
·===

ARRAY. SI ZE%=6

@DI MENS ION

I:::

DIM LABEL.ARRAY$(ARRAY.SIZE%)
CLEAR.LINE$=CHR$(30):CLEAR.SCREEN$=CHR$(31)

1 IF THE DIRECTIVE 11 CHARS 11 WAS PASSED, TAKE THE INPUT FOR THE
'NUMBER OF CHARACTERS PER LINE
I:::

*IF CHARS
@CHARS. INPUT

*END

CLS :PRINT @ (8, 12), 1111 ;

PRINT "ENTER NUMBER OF CHARACTERS PER LABEL 11

AT%=(80*8+49):FIEL0%=2:GOSUB @INPUT
IF INP$= 11 @11 THEN GOTO @END.PROGRAM
IF INP$= 1111 THEN @CHARS.INPUT

FOR GLOBAL.LOOP%=1 TO LEN(INP$)
TEMPORARY$=MID$(INP$,GLOBAL.LOOP%,1)

IF TEMPORARY$< 11 011 OR TEMPORARY$> 11 911 THEN @CHARS. INPUT
NEXT GLOBAL.LOOP%
LABEL.LENGTH%=VAL(INP$)
GOTO @INPUT.FILE

LABEL. LENGTH%= 35

127

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
--------- TANDY COMPUTER PRODUCTS---------

@INPUT.FILE
NAME.OF.FILE$= 1111

FOR GLOBAL.LOOP%=1 TO ARRAY.SIZE%
LABEL.ARRAY$(GLOBAL.LOOP%)= 11 11

NEXT GLOBAL.LOOP%
CLS:PRINT TAB(l6) 11 LABEL PRINTING PROGRAM 11 ·

PRINT @(5,10), 11 00 YOU WISH TO USE AN EXISTING FILE (Y,N,@)
AT%=(5*80+55):FIELD%=2:GOSUB @INPUT

IF INP $=11 @11 THEN @END. PROGRAM
IF INP$= 11 N11 THEN @BUILD.LABEL
IF INP$<> 11 Y11 THEN @INPUT.FILE

@ENTER.FILE
PRINT @(5,l~),CLEAR.LINE$; 11 ENTER THE NAME OF THE FILE"
AT%=(5*80+42):FIELD%=15:GOSUB @INPUT

IF INP$= 11 @11 THEN @INPUT.FILE
ON ERROR GOTO @NO.SUCH.FILE
NAME.OF.FILE$=INP$
OPEN 11 I 11 ,l,NAME.OF.FILE$
ON ERROR GOTO 0
TEMP%=1
STAT$= 11 0K 11

IF EOF (1) THEN STAT$= 11 MTH
WHILE STAT$=11 0K 11

LINE INPUT#l, LABEL.ARRAY$(TEMP%)
IF EOF (1) THEN STAT$=" EOF"

LINE.LENGTH%=LEN(LABEL.ARRAY$(TEMP%))
IF LINE.LENGTH%>LABEL.LENGTH% THEN STAT$= 11 BAD 11

TEMP%=TEMP%+ 1
IF TEMP%>ARRAY. SIZE% AND STAT$<> 11 EOF 11 THEN STAT$= 11 BAD 11

WEND
CLOSE

IF STAT$= 11 BAD" THEN GOTO @WRONG.PROG
IF STAT$<> 11 EOF 11 THEN GOTO @INPUT.FILE

GOSUB @DISPL.LABEL
GOTO @ED IT. LABEL

@BUILD.LABEL
PRINT@ (l,0),CLEAR.SCREEN$
FOR GLOBAL.LOOP%=1 TO ARRAY.SIZE%

PRINT @ (GLOBAL. LOOP%+5 ,0), "LINE #11 ;GLOBAL. LOOP%
AT%=((GLOBAL.LOOP%+5)*80+10)
FIELD%=LABEL.LENGTH%:GOSUB @INPUT

IF INP$<> 11 @11 THEN GOTO @BUILD.LOOP
IF GLOBAL.LOOP%=1 THEN GOTO @INPUT.FILE

GOTO @BUILD.LABEL

128

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
--------- TANDY COMPUTER PRODUCTS---------

@BUILD.LOOP
IF INP$="" THEN INP$=" II

LABEL.ARRAY$(GLOBAL.LOOP%)=INP$
NEXT GLOBAL.LOOP%

@EDIT.LABEL
PRINT@ (23,0),"ENTER COMMAND 11 ;

PRINT "<Y> IF CORRECT, LINE# TO CORRECT, ";
PR INT II<@> TO STOP II;
AT%=(23*80+70):FIELD%=2:GOSUB @INPUT

IF INP$="@ 11 THEN @INPUT.FILE
IF INP$= 11 Y11 THEN @PRINT.LABEL

TEMP%=VAL (INP $)
IF TEMP%<1 OR TEMP%>ARRAY.SIZE% THEN @EDIT.LABEL

AT%= (TEMP%+5)*80
PRINT @ AT%, 11 LINE #11 ; TEMP%;
AT%= AT% +10 : FIELD%=LABEL.LENGTH%
GOSUB @INPUT
LABEL. ARRAY$ (TEMP%)= INP $
GOTO @ED IT. LABEL

@PRINT.LABEL
PRINT@ (23,0),CLEAR.SCREEN$;
PRINT"NUMBER OF LABELS TO PRINT? (<ENTER>=l, <@> TO STOP) 11 ;

AT%=(23*80+70):FIELD%=3:GOSUB @INPUT
IF !NP$="@" THEN @EDIT.LABEL
IF INP$= 1111 THEN NO.OF.LABELS%=1 ELSE NO.OF.LABELS%=VAL(INP$)
IF NO.OF.LABELS%<1 THEN @PRINT.LABEL

FOR GLOBAL.LOOP%=1 TO NO.OF.LABELS%
INK$=INKEY$:IF INK$= 11 @11 THEN GOSUB @STOP.PRINTING:

IF INP$= 11 Y11 THEN @SAVE.FILE
FOR GLOBAL.LOOP1%=1 TO ARRAY.SIZE%

LPRINT LABEL.ARRAY$(GLOBAL.LOOP1%)
NEXT GLOBAL.LOOP1%

NEXT GLOBAL.LOOP%
PRINT@ (23,0),CLEAR.SCREEN$;
PRINT 11 00 YOU WISH TO PRINT MORE? (Y/N)";

@PR INT. MORE
AT%=(23*80+70):FIELD%=2:GOSUB @INPUT

IF INP$= 11 Y11 THEN @PRINT.LABEL
IF INP$<> 11 N11 THEN @PRINT.MORE

@SAVE. FILE
PRINT@ (23,0),CLEAR.SCREEN$;
PRINT 0 D0 YOU WISH TO SAVE THIS FILE (Y /N) 11 ;

AT%={23*80+70) :FIELD%=2:GOSUB @INPUT
IF INP$=" N" THEN @INPUT. FILE
IF INP$<> 11 Y" THEN @SAVE. FILE

129 ·

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
--------- TANDY COMPUTER PRODUCTS---------

@FILENAME
PRINT@ (23,0),CLEAR.SCREEN$;
PRINT "ENTER FILENAME (<ENTER>=SAME NAME)";
AT%=(23*80+36):FIELD%=15:GOSUB @INPUT

IF INP$<> 1111 THEN NAME.OF.FILE$=INP$:GOTO @WRITE.FILE
IF NAME.OF.FILE$=1111 THEN @FILENAME

@WR ITE . F I LE
ON ERROR GOTO @CANNOT.WRITE
OPEN 11 011 ,l,NAME.OF.FILE$
FOR GLOBAL.LOOP%=1 TO ARRAY.SIZE%

PRINT#l, LABEL.ARRAY$(GLOBAL.LOOP%)
NEXT GLOBAL.LOOP%
CLOSE
ON ERROR GOTO 0
GOTO @INPUT.FILE

@NO.SUCH.FILE
PRINT@ (23,10),CLEAR.LINE$;
PRINT "CANNOT USE FILE --->";NAME.OF. FILE$;
PRINT@ {7,10), 1111

PRINT 11 THE ERROR THAT OCCURRED IS ERROR #";ERR
AT.ENTER%=(9*80+10)
GOSUB @PRESS.ENTER
PRINT@ (5,10),CLEAR.SCREEN$
PRINT NAME.OF.FILE$=""
RESUME @ENTER.FILE

@WRONG.PROG
PRINT@ (5,10),CLEAR.SCREEN$;
PRINT "CANNOT USE THIS VERSION OF THE PROGRAM 11 ;

PRINT@ (6,10),"TO PROCESS THE FILE---> 11 ;

PRINT NAME.OF.FILE$
AT.ENTER%=(9*80+10):GOSUB @PRESS.ENTER
NAME.OF.FILE$=" 11 :CLOSE:GOTO @INPUT.FILE

@CANNOT. WRITE
PRINT@ (23,0),CLEAR.SCREEN$;
PRINT "CANNOT SAVE FILE -- ERROR=" ;ERR;
PRINT II <R>ETRY OR <@>TO STOP 11 ;

130

MODEL 4 TRSDOS 6.02.0~ UTILITIES PACKAGE
--------- TANDY COMPUTER PRODUCTS---------

@INPUT. WRITE
AT%=(23*8~+7~):FIELD%=2:GOSUB @INPUT

IF INP$= 11 R11 THEN NAME.OF.FILE$= 1111 :RESUME @SAVE.FILE
IF INP $ <> 11 @11 THEN @INPUT. WRITE

RESUME @END.PROGRAM
@END.PROGRAM

ON ERROR GOTO 0:CLS
PRINT @ (6, 3~), "LABEL PROGRAM ENDED":
CLOSE
END

When TBA completes processing without error, you can obtain the
object file (exact output depends on the directives you use for
processing):

6 GOTO 95
14 FI%=FJ%:AT%=AU%
15 IN$=1111 :I0$=1111

16 PRINT@ AU%,STRING$(FJ%,138);
18 FL%= LEN(l0$) .
19 PRINT@ AT%+ FL% , 1111 ;

20 IN$ = INKEY$
21 WHILE IN$ = 1111

22 IN$ = INKEY$
23 WEND
25 IF IN$=CHR$(13)THEN 37
26 IF IN$=CHR$(8) THEN FI%=FI%+1
27 IF FI%>FJ% THEN 14
28 IF IN$=CHR$(8) THEN IO$=LEFT$(IO$,LEN(I0$)-1)
29 IF ASC (IN$) <32 THEN IN$="": GOTO 34
3Q IO$=IO$+IN$
31 FI %= F I %- 1
32 IF FI%=0 THEN PRINT@ AU%,IO$;:GOTO 37
34 PRINT@ AU%, IO$+STRING$(FI%,138);
35 GOTO 18
37 IF FI%<>0 THEN PRINT@ AU%,IO$;SPACE$(FI%);
38 RETURN
47 PRINT @ AV%, "PRESS <ENTER> TO CONTINUE"
49 AU%= AV%+3~: FJ%=1:GOSUB 14
50 IF IO$<>"" THEN 49
51 RETURN

131

t()DEL 4 TRSDOS 6. 02. 011 UTILITIES PACKAGE
--------- TANDY COMPUTER PRODUCTS---------

60 PRINT@ (5,0),CM$
61 FOR GL%=1 To· AR%
62 PRINT @ (GL%+5,0), "LINE #11 ;

63 PRINT GL%; 11 11 ;

64 PRINT LA$(GL%)
65 NEXT GL%
66 RETURN
73 PRINT @(23,0),CM$;
74 PRINT 11 00 YOU WISH TO STOP PRINTING (Y /N) 11 ;

76 AU%=(00*23+38)
77 FJ%=2: IO$= 1111

78 WHILE IO$<> 11 Y11 AND IO$<> 11 N'1

79 GOSUB 14
80 WEND
81 PRINT@ (23,0),CM$;
82 RETURN
95 AR%=6
98 DIM LA$(AR%)
99 CL$=CHR${30):CM$=CHR$(31)
109 CLS:PRINT@ (8,12), 1111 ; •

110 PRINT "ENTER NUMBER OF CHARACTERS PER LABEL 11

111 AU%=(80*8+49):FJ%=2:GOSUB 14
112 IF I0$=11 @11 THEN GOTO 257
113 IF I0$= 1111 THEN 109
114 FOR GL%=1 TO LEN(IO$)
115 TE$=MID$(IO$,GL%,1)
116 IF TE$< 11 011 OR TE$> 11 911 THEN 109
117 NEXT GL%
118 LA%=VAL (10$)
119 GOTO 127
123 LA%=35
127 NA$= 1111

128 FOR GL%=1 TO AR%
129 LA$(GL%)= 11 11

130 NEXT GL% /
131 CLS:PRINT TAB(16) 11 LABEL PRINTING PROGRAM"
132 PRINT @(5,1(,1), 11 00 YOU WISH TO USE AN EXISTING FILE (Y,N,@)
133 AU%=(5*00+55):FJ%=2:GOSUB 14
134 IF I0$=11 @11 THEN 257
135 IF I0$=11 N11 THEN 162

132

MODEL 4 TRSDOS 6.02.0ij UTILITIES PACKAGE
--------- TANDY COMPUTER PRODUCTS---------

136 IF 10$<>" Y11 THEN 127
138 PRINT @(5,HJ),CL$; 11 ENTER THE NAME OF THE FILE 11

139 AU%=(5*80+42):FJ%=15:GOSUB 14
140 IF IO$="@" THEN 127
141 ON ERROR GOTO 231
142 NA$= IO$
143 OPEN 11 I 11 ,l,NA$
144 ON ERROR GOTO 0
145 TE%=1
146 ST$=" OK"
14 7 IF EOF (1) THEN ST$=" MT"
148 WHILE ST$= 11 0K 11

149 LINE INPUT#l, LA$(TE%)
150 IF EOF(l) THEN ST$=11 EOF"
151 LI%=LEN(LA$(TE%))
152 IF LI%>LA% THEN ST$= 11 BAD 11

15 3 TE%= TE%+ 1
154 IF TE%>AR% AND ST$<>"EOF" THEN ST$=11 BAD 11

155 WEND
156 CLOSE
157 IF ST$= 11 BAD" THEN GOTO 241
158 IF ST$<> 11 EOF 11 THEN GOTO 127
159 GOSUB 60
160 GOTO 175
162 PRINT@ (l,0),CM$
163 FOR GL%=1 TO AR%
164 PRINT@ (GL%+5,0), 11 LINE #11 ;GL%
165 AU%=((GL%+5)*80+10)
166 FJ%=LA%:GOSUB 14
167 IF IO$<>"@" THEN GOTO 171
168 IF GL%=1 THEN GOTO 127
169 GOTO 162
171 IF 10$=1111 THEN I0$= 11 II

172 LA$ (Gl%)= IO$
173 NEXT GL%
175 PRINT@ (23,0),"ENTER COMMAND 11 ;

176 PRINT "<Y> IF CORRECT, LINE # TO CORRECT, 11 ;

177 PRINT 11 <@> TO STOP";
178 AU%=(23*80+70):FJ%=2:GOSUB 14
179 IF IO$="@" THEN 127
180 IF IO$="Y" THEN 190

133

MODEL 4 TRSDOS 6. 02. 00 UTILITIES PACKAGE
--------- TANDY COMPUTER PRODUCTS---------

181 TE%=VAL(IO$)
182 IF TE%<1 OR TE%>AR% THEN 175
183 AU%= (TE%+5)*80
184 PRINT @ AU%, "LINE #11 ; TE%;
185 AU%= AU% +1~: FJ%=LA%
186 GOSUB 14
187 LA$(TE%)= IO$
188 GOTO 175
190 PRINT@ (23,0),CM$;
191 PRINT"NUMBER OF LABELS TO PRINT? (<ENTER>=l, <@> TO STOP)";
192 AU%=(23*00+7~):FJ%=3:GOSUB 14
193 IF IO$="@" THEN 175
194 IF I0$= 1111 THEN N0%=1 ELSE NO%=VAL(IO$)
195 IF N0%<1 THEN 190
196 FOR GL%=1 TO NO%
197 IP$=INKEY$: IF IP$=11 @11 THEN GOSUB 73:
198 IF IO$=" Y11 THEN 21(1
199 FOR GM%=1 TO AR%
200 LPRINT LA$(GM%)
201 NEXT GM%
202 NEXT GL%
2~3 PRINT@ (23,0),CM$;
204 PRINT 11 00 YOU WISH TO PRINT MORE? (Y/N)";
2(16 AU%=(23*80+70):FJ%=2:GOSUB 14
207 IF IO$=" Y11 THEN 190
208 IF IO$<>"N" THEN 2~6
21(1 PRINT@ (23,0),CM$;
211 PRINT 11 D0 YOU WISH TO SAVE THIS FILE (Y /N) 11 ;

212 AU%=(23*80+70):FJ%=2:GOSUB 14
213 IF I0$=11 N11 THEN 127
214 IF I0$<> 11 Y11 THEN 210
216 PRINT@ (23,0),CM$;
217 PRINT 11 ENTER FILENAME (<ENTER>=SAME NAME)11 ;

218 AU%=(23*00+36):FJ%=15:GOSUB 14
219 IF IO$<>'"' THEN NA$=IO$:GOTO 222 ./
220 IF NA$="" THEN 216
222 ON ERROR GOTO 248
223 OPEN "0",1,NA$
224 FOR GL%=1 TO AR%
225 PRINT#l, LA$(GL%)

134

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
---------- TANDY COMPUTER PRODUCTS----------

226 NEXT GL%
227 CLOSE
228 ON ERROR GOTO 0
229 GOTO 127
231 PRINT@ (23,l~),CL$;
232 PRINT "CANNOT USE FILE --->";NA$;
233 PRINT@ (7,1~), 1111

234 PRINT "THE ERROR THAT OCCURRED IS ERROR #";ERR
235 AV%=(9*80+1~)
236 GOSUB 47
237 PRINT@ (5,10),CM$
238 PRINT NA$=""
239 RESUME 138
241 PRINT@ (5,10),CM$;
242 PR INT II CANNOT USE TH IS VERSION OF THE PROGRAM 11 ;

243 PRINT@ (6,l@), 11 TO PROCESS THE FILE---> 11 ;

244 PRINT NA$
245 AV%=(9*80+10):GOSUB 47
246 NA$= 1111 :CLOSE:GOTO 127
248 PRINT@ (23,0),CM$;
249 PRINT "CANNOT SAVE FILE -- ERROR= 11 ;ERR;
250 PRINT 11 <R>ETRY OR <@>TO STOP";
252 AU%=(23*80+7~):FJ%=2:GOSUB 14
253 IF I0$= 11 R11 THEN NA$= 1111 :RESUME 210
254 IF IO$ <> 11 @11 THEN 252
255 RESUME 257
257 ON ERROR GOTO 0:CLS
258 PRINT@ (6,30),"LABEL PROGRAM ENDED":
259 CLOSE
260 END

Although you often have to repeat the same instructions, especially
during the final debugging stages, do not get discouraged. TBA works
well with TRSDOS JCL, especially in debugging a program. TBA inputs
sent with a JCL file can process the source, then call y~ BASIC to
run the object program.

135

MODEL 4 TRSDOS 6.02.0(1 UTILITIES PACKAGE
----------- TANDY COMPUTER PRODUCTS -----------

Before you start TBA processing, you can load, merge and move text
around in your editor from a JCL file. This may not work ·with all
editors. Once you edit, DO filename does the repetitive work for
you. If your editor cannot take its input from a JCL file, you can
still perform the merge processes from JCL by using the APPEND
command. If you find maintaining assorted JCL files repetitive, then
consider writing a TBA program which writes the JCL for you.

Finally, the TRSDOS KSM filter can expand 1 key stroke into many;
therefore, [CLEAR][AJ, for example, does all the above for you, and
more.

Exercise 4

The last exercise demonstrates how you execute a series of
TBA-related processes from a JCL file. The source, along with other
files in this exercise, demons~rates 1 method of creating a program
by using overlays that the CHAIN MERGE statement in BASIC calls. The
program follows the outline structure discussed in "The Use of CHAIN
MERGE, and COMMON statements".

RES/TTL

*TITLE "Ex 4 Resident"

OVl/TTL

*TITLE "Ex 4 Overlay l"

OV2/TTL

*TITLE "Ex 4 Overlay 2"

136

MODEL 4 TRSDOS 6.02.0~ UTILITIES PACKAGE
----------- TANDY COMPUTER PRODUCTS -----------

OV3/TTL

*TITLE "Ex 4 Overlay 311

COMMON/BLK

=co.resident%,co.which%
common co.resident%, co.which%
1 end of #1, start of #2

@start. ovrl ay
els

OV0/TBA

print @(12,12), "Resident=";co.resident%
goto @main
I

1 end of resident #2, start of resident #3

PRCDRS/TBA

@dummy.prcdr=lo.string$
lo.string$= 11 Local string (set by resident)"
print @(11,12), lo.string$;
return
1 end of #3, start of #4

137

MODEL 4 TRSDOS 6.02.0~ UTILITIES PACKAGE
----------- TANDY COMPUTER PRODUCTS -----------

@main
gosub @dunmy.prcdr
print @(13,12), "";

RESMAIN/TBA

input "overlay 1, 2, or 3 (0=exit) 11 ;co.which%
if co.which%=0 then goto @end.program
on co.which% goto @ovrlayl,@ovrlay2,@ovrlay3
@main .end
goto @main
I

@ovrlayl
if co.resident%=! then goto@ovrlay.ca11
co. resident%= 1
chain merge 11 ovl/bas 11 , @ovrlay.ca1l
I

@ovrlay2
if co.resident%=2 then goto@ovrlay.ca1l
co.resident%=2
chain merge 11 ov2/bas 11 ,@ovrlay.ca11
I

@ovrl ay3
if co.resident%=3 then goto@ovrlay.ca11
co.resident%=3
chain merge 11 ov3/bas", @ovrlay.ca ll
I

@ovrlay.ca11
gosub @start.ovrlay
goto @main.end
' end of #4, start of #5
@end .program
end

@start.ovrlay
rem

OVl/TBA

print @(12,12), "(OVl) Resident= 11 ;co.resident%
return
rem
rem

138

MODEL 4 TRSDOS 6.02.0~ UTILITIES PACKAGE
----------- TANDY COMPUTER PRODUCTS -----------

OV2/TBA

@start.ovrlay
print @(12,12), "(OV2) Resident=";co.resident%
rem
rem
rem
return

PRCDRS2/TBA

Note: this file is only included for the purpose of clarity.
It contains a modified string string literal for demonstration
purposes.
It will normally be the procedure group PRCDRS/TBA (above).

@durm1y.prcdr=lo.string$
lo.string$= 11 Local string (set by [OV2 J)"
print @(ll,12),lo.string$;
return
' end of #3, start of #4

OV3/TBA

@start .ovrl ay
for x=l to 99:gosub @ovrlay.prcdr:next x
print@ (12,12), "(OV3) Resident=";co.resident%;:return
@ovrlay.prcdr=ov.string$
ov.string$= 11 overlay string set by [OV3]":print@(ll,12),ov.string$;chr$(31);
return

1 REM
2 REM
3 REM
4 REM
5 REM

REMSIZ10/TBA

139

MODEL 4 TRSDOS 6.02.0~ UTILITIES PACKAGE
---------- TANDY COMPUTER PRODUCTS----------

6 REM
7 REM
8 REM
9 REM
1~ REM

With the above files on disk, the following JCL merges, processes,
and then runs the resulting program.

Note: The following syntax is appropriate to source files that
ALEDIT creates. You can modify it for source files you create on
another editor.

TBA4/JCL
Note: To execute, use DO TBA4 <enter>

COPY RES/TTL:1 TO RES/MRG:l
APPEND COMMON/BLK:1 TO RES/MRG:1 (STRIP)
APPEND OV0/TBA:1 TO RES/MRG:1 (STRIP)
APPEND PRCDRS/TBA:1 TO RES/MRG:1 (STRIP)
APPEND RESMAIN/TBA:1 TO RES/MRG:1 (STRIP)
TBA
RES/MRG:l
RES/BAS: 1
<enter>
<enter>
COPY OVl/TTL:1 TO OVl/MRG:1
APPEND COMMON/BLK:1 TO OVl/MRG:1 (STRIP)
APPEND OVl/TBA:1 TO OVl/MRG (STRIP)
TBA
OV 1/MRG: 1
OV 1/BAS: 1
<enter>
<enter>
BASIC
LOAD "REMSIZl~/TBA:1 11

MERGE 11 0V 1/BAS: l 11

14~

MODEL 4 TRSOOS 6.02.0~ UTILITIES PACKAGE
--------- TANCY COMPUTER PRODUCTS---------

SAVE "OVl/BAS:1°,A
SYSTEM
COPY OV2/TTL:1 OV2/MRG:l
APPEND COMMON/BLK:1 TO OV2/MRG:l (STRIP)
APPEND OV2/TBA:1 TO OV2/MRG:l (STRIP)
APPEND PRCDRS2/TBA:1 TO OV2/MRG (STRIP)
TBA
OV2/MRG: 1
OV 2/BAS: 1
<enter>
<enter>
BASIC
LOAD "REMSIZla/TBA:1"
MERGE II ov 2/BAS: l 11

SAVE "0V2/BAS:l",A
SYSTEM
COPY OV3/TTL:1 TO OV3/MRG:l
APPEND COMMON/BLK:1 TO OV3/MRG:l (STRIP)
APPEND OV3/TBA:l TO OV3/MRG:1 (STRIP)
TBA
OV 3/MRG: 1
OV 3/BAS: 1
<enter>
<enter>
BASIC
LOAD "REMSIZl~/TBA:1"
MERGE 11 0V3/BAS:1"
SAVE 11 0V3/BAS:1",A
RUN 11 RES/BAS:l1'
//STOP

141

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
---------- TANDY COMPUTER PRODUCTS----------

INDEX

array
index 13, 24-25, 28
one-dimensional 15
primary 13, 14, 16-18, 20
secondary 14, 16-18, 20, 28
sorting 13, 15
tag 14, 20-21, 28
variables 48

ascending sort 13, 15, 17-23
ASCII 31-33, 35, 52, 69
BACKUP 7, 8
Branching 46, 53-54, 57, 103
BS ORT 5, 13
CHAIN W4
CLEAR 32, 35
COMMON 1~4
COMP6 5, 11

comparing diskettes 11, 12
files 11, 12
records 11, 12
sectors 11, 12

compressed format 31
conditional processing 5~, 79, 80, 81, 82
converting

PRINT positions 38
TAB positions 4@

cross reference listing 85, 98
descending sort 13, 15, 18-20, 25, 27
differentiate case (DC) 45, 53, 58, 85
directives 49-5~, 52, 71-73, 74, 78-83

prompt 50, 52, 72, 82, 87
diskette compare 11, 12
*END 49, 5i, 71, 79, 80
error trapping 1~1
expressions 49, 52, 72, 79-83
file compare 11, 12
FORMAT 7, 8
FORMS/FLT 50, 72, 113
full compression (FC) 68-69, 85
global variables 48, 57, 59-60, 66-67, 80, 102-103
GOSUB 54-57
GOTO 55-57, 65
granule a11ocation table (GAT) 43

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
---------- TANDY COMPUTER PRODUCTS----------

hash index table (HIT) 43
*IF 49-5~, 71, 79, 80
IF /THEN 33
keywords, MOD324 problem 34
labels 46, 52, 53, 55-56, 64
*LIST 49-5~, 71, 73, 76
LOOS 31
local variables 47, 57, 59-60, 62, 65-66, 102
MID$ sort 14, 22-23, 26
MOD324 5, 31
Model III BASIC 5, 31-33, 57
Model 4 BASIC 5, 32-33, 57
object code 52, 62, 64, 67-68, 99-1~0
ON ERROR GOTO l~l
overlay sections 1~8-09
*PAGE 49-5~, 71, 76
PRINT@ 31, 34, 36-39
PRINT TAB 31, 34, 36, 38-4~
*PRLINES 49-5~, 71, 73, 86
procedures 46, 48-49, 53-55, 57, 59, 62, 64-65
processing parameters 51-52, 85
PURGE 43
QFB6 5, 7
record compare 11, 12
REM 47, 49, 53, 68
REMOVE 43
reserved words 47
resident program 107, 109
RESUME 1~1
RETURN 49, 54-55, 57, 64
sector compare 11, 12
sorting

1-dimesional array 15, 17, 25
2-dimensional array 26, 27
order 13-15, 17-21
part of an array 16, 2~
part of a string 22, 23
primary array 14-15, 17-18, 22-24, 28-3~
secondary array 14, 16-18, 2~-22, 28-3~

sort key 14, 22-23, 28, 3~
source code 45, 552 64, 67-7~, 99-1~0
subscript 13, 14, 25, 29, 3~, 673 68

MODEL 4 TRSDOS 6.02.00 UTILITIES PACKAGE
---------- TANDY COMPUTER PROOUCTS ----------

tag arrays 2(o, 21, 26, 28
TBA 45
*TITLE 49, 5(o, 71, 78
TRSDOS 5, 7, 31
type declaration tags 47, 57-59, 69
UNKILL 5, 43
variables

array 48, 67, 68
creating 47, 58
defining 59, 69
global 48, 57, 59-6(,o, 62, 66-67, 8@, l(o2-03
local 48, 57, 59-6(,o, 62, 65, 66, l(o2
processing 57, 68

verify during BACKUP 7-9

./

